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1. AJOUTER NOMBRES COMPLEXES

Objectifs des chapitres

Chapitre 1 : Généralités sur les fonctions numériques

— Ensemble de nombres, intervalle, inclusion, exclusion, réunion, intersection.

— Fonction, image/antécédent, domaine de définition, (dé)croissante/monotone, strictement (dé)croissante,
strictement monotone, paire/impaire, composition de fonctions.

— Limites, limites comparées exp/polynômes/ln, factorisation par le terme dominant, règle de l’Hospital.

— Dérivation (uv)’ ; (u/v)’ ; (f ◦ g)’ ⇒ exp(u)′ ; ln(u)’ ; (un)′.

— Étude d’une fonction.

— Être capable de tracer 1
x , cos x, sin x, x2, x3, ex, ln(x),

√
x, 2x+ 1, (x− 1)2 + 3.

Chapitre 2 : Fonctions usuelles

— Domaines de définition, dérivée et graphique de ex, ln(x), tan(x), arctan(x), sinh(x), cosh(x), tanh(x).

— Opérations sur les ex, ln(x).

Chapitre 3 : Intégration

— Calculer une primitive, une intégrale.

— Utiliser la formule de l’IPP (et la correspondance ALPES).

Chapitre 4 : Équations différentielles

— Résoudre une ED du 1er ordre avec ou sans second membre.

— Résoudre une ED du 2nd ordre avec ou sans second membre.

Remarque générale

Mâıtriser un mot/une notion signifie :

1. être capable de faire une phrase en français pour le/la définir

2. connâıtre sa correspondance en ”langage mathématique”

3. être capable de donner un exemple avec une représentation graphique

Exemple : La fonction f est paire. Il faut être capable :

1. de dire que la représentation graphique de f est symétrique par rapport à l’axe des ordonnées Oy

2. d’écrire f(x) = f(−x)

3. d’avoir les représentations graphiques des fonctions x2 et cos x en tête et être capable de les tracer,
en notant les coordonnées des points importants.



1Généralités sur les fonctions
numériques

Chapitre 1

L’objectif de ce chapitre est de faire des rappels sur ce que vous avez vu au lycée à propos des fonctions
numériques.
Nous étudierons dans le chapitre suivant plus en détail les fonctions usuelles.

1 Ensembles de nombres

On appelle ensemble de nombres E une collection de nombres distincts, bien définis, que l’on peut ca-
ractériser sans ambigüıté.

Si l’ensemble est discontinu, on note ses éléments entre accolades.

Exemple 1.1
L’ensemble des nombres entiers compris entre −2, 5 et 2, 5 est E = {−2,−1, 0, 1, 2}.

Lorsque l’ensemble est continu, on peut le noter entre crochets et on parle alors d’intervalle.

Exemple 1.2
• L’intervalle des nombres réels compris entre −2 et 2, ces deux valeurs étant incluses est noté [−2, 2].

• L’intervalle des réels compris entre −2 et 2, ces deux valeurs étant exclues est noté ]− 2, 2[.

• L’intervalle des réels inférieurs ou égaux à −2 est noté ]−∞,−2].

Pour définir un ensemble on peut écrire chacun des éléments, les désigner par une formule générale, ou faire
appel à une logique de récurrence.

Exemple 1.3
L’ensemble des entiers positifs pairs peut être noté E = {2k ; k ∈ Z+} ou E = {0 ; 2 ; 4 ; ...}

Pour signifier qu’un élément a appartient à l’ensemble E, on note a ∈ E. Pour signifier qu’un élément a
n’appartient pas à l’ensemble F , on note a /∈ F .

Exemple 1.4
Soit l’ensemble E = {−2 ; −1 ; 0 ; 1 ; 2} : −2 ∈ E mais 3 /∈ E.

Ensembles usuels :

• Ensemble des nombres entiers naturels (entiers positifs) :

N = {0 ; 1 ; 2 ; ...}
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• Ensemble des nombres entiers relatifs (tous les entiers, positifs ou négatifs) :

Z = {... ; −2 ; −1 ; 0 ; 1 ; 2 ; ...}

• Ensemble des nombres rationnels :

Q =
{a
b

; a, b ∈ Z ; b 6= 0
}

C’est l’ensemble des nombres qui s’expriment comme le quotient de deux nombres entiers. Le déve-
loppement décimal d’un nombre rationnel est toujours périodique au bout d’une certaine décimale.

• Ensemble des nombres réels R.
C’est l’ensemble des nombres qui peuvent être représentés par une partie entière et une liste finie ou
infinie de décimales, par forcément périodiques.

• Ensemble des nombres complexes :

C = {a+ ib ; a, b ∈ R}

• L’ensemble vide (qui ne contient aucun élément) est noté �.

Exclusion de certaines valeurs :

• Pour signifier que l’on ne considère que les nombres positifs dans un ensemble donné, on ajoute un
+ en indice.
De même pour signifier que l’on ne considère que les nombres négatifs dans un ensemble donné, on
ajoute un − en indice.

Exemple 1.5
Z+ = N = {0 ; 1 ; 2 ; ...}
Z− = {... ; −2 ; −1 ; 0}

• Pour signifier que l’on exclut le nombre 0, on ajoute un ∗ en exposant.

Exemple 1.6
Z∗ = {... ; −2 ; −1 ; 1 ; 2 ; ...}

• On peut exclure certaines valeurs d’un ensemble en utilisant le symbole \.

Exemple 1.7
Pour l’ensemble E contenant “tous les nombres entiers naturels sauf les multiples de 10”, on peut
écrire : E = N \ {10k ; k ∈ N}

Relations entre les ensembles :

Soient deux ensembles E et F .

• Si tous les éléments de E appartiennent également à F , on dit que E est inclus dans F et on note :
E ⊂ F .

Exemple 1.8
N ⊂ Z

• L’ensemble des éléments qui sont à la fois des éléments de E et des éléments de F est appelé inter-
section des ensembles E et F et est noté E ∩ F .

Exemple 1.9
Soient E = {1, 2, 3} et F = {2, 3, 4, 5}, alors E ∩ F = {2, 3}

• L’ensemble des éléments qui sont des éléments de E ou des éléments de F est appelé réunion des
ensembles E et F et est noté E ∪ F .
Attention, en mathématiques le mot “ou” est un “ou” inclusif : il signifie ou/et.

Exemple 1.10
Soient E = {1, 2, 3} et F = {2, 3, 4, 5}, alors E ∪ F = {1, 2, 3, 4, 5}
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Ensembles de n-upplets :

On peut également ne pas considérer des nombres isolés mais des couples de nombres, des triplets, des
quadruplets, etc ...
Par exemple lorsque l’on trace un graphique, un point du plan est représenté par deux nombres : son abscisse
x et son ordonnée y. Ainsi les points du plan peuvent être représentés par l’ensemble {(x, y) ; x, y ∈ R}.
Cet ensemble est noté R× R ou R2.

Plus généralement, on appelle produit cartésien d’un ensemble E = {a} par un ensemble F = {b}
l’ensemble des couples (a, b), et on le note E × F = {(a, b)}.
Dans le cas particulier où E = F on note E × E = E2.

2 Fonctions

2.1 Définition

Une fonction est une relation entre un ensemble de départ E et un ensemble d’arrivée F , qui à tout élément
de E fait correspondre un élément de F .
On note :

f : E → F

x 7→ y = f(x)

x est un élément de l’ensemble E.
y est un élément de l’ensemble F , qui est lié à x par une relation précise définissant la fonction.

y et appelé image de x par f .
x et appelé antécédent de y par f .

Exemple 1.11
La fonction carrée est une fonction de R vers R+ que l’on peut écrire :

f : R → R+

x 7→ f(x) = x2

Remarque 1.1
Il faut faire attention à ne pas confondre la fonction f avec le nombre f(x).
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2.2 Représentation graphique d’une fonction

La représentation d’une fonction f : x 7→ y = f(x) dans un repère (O, ~ux, ~uy) est l’ensemble des points M
de coordonnées (x, y).
L’étendue des ensembles de départ et d’arrivée étant souvent différentes, on ne représentera pas toujours
(et même très rarement) les fonctions dans un repère orthonormé.

Exemple 1.12

f : x 7→ x2

2.3 Domaine de définition d’une fonction

Le domaine de définition Df d’une fonction f est le sous-ensemble des réels possédant une image par la
fonction f .

Pour déterminer l’ensemble de définition d’une fonction il faut se poser la question : pour quelles valeurs de
x a-t-on le droit de calculer f(x) ?

Voici le rappel de quelques règles pouvant vous aider à déterminer l’ensemble de définition d’une fonction :

• Le dénominateur d’une fraction ne doit pas s’annuler ;

• Ce qu’il y a sous une racine carrée doit être positif ou nul ;

• x2 = x0 ⇐⇒ x =
√
x0 ou x = −√x0 ;

•
√
x2 = |x| (et pas “x ou - x” comme certains d’entre vous auront envie de l’écrire, car une racine est

toujours positive...).

Exemple 1.13
• f1 : x 7→ 1

x
.

Il ne faut pas que x = 0 : D1 = R∗.

• f2 : x 7→ 1

x− 1
.

Il faut x− 1 6= 0 =⇒ x 6= 1 : D2 = R \ {1}.
• f3 : x 7→

√
x.

Il faut x ≥ 0 : D3 = R+.
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• f4 : x 7→ 1√
x− 1

.

Il faut x−1 > 0 (≥ 0 à cause de la racine et 6= 0 car cette racine est au dénominateur d’une fraction)
=⇒ x > 1 : D4 =]1 ; +∞[.

• f5 : x 7→
√
|x|.

Il n’y a aucune restriction : D5 = R.

• f6 : x 7→ 1

x2 − 1
.

Il ne faut pas que x2 − 1 = 0 =⇒ x = ±1 : D6 = R \ {1 ; −1}.

2.4 Sens de variation d’une fonction

Soit une fonction f définie sur un intervalle Df et soit un intervalle I ⊂ Df .

• f est croissante sur l’intervalle I si :

∀x1, x2 ∈ I x2 ≥ x1 ⇔ f(x2) ≥ f(x1)

f est strictement croissante sur l’intervalle I si :

∀x1, x2 ∈ I x2 > x1 ⇔ f(x2) > f(x1)

• f est décroissante sur l’intervalle I si :

∀x1, x2 ∈ I x2 ≥ x1 ⇔ f(x2) ≤ f(x1)

f est strictement décroissante sur l’intervalle I si :

∀x1, x2 ∈ I x2 > x1 ⇔ f(x2) < f(x1)

• f est monotone sur l’intervalle I si f est uniquement croissante sur I ou uniquement décroissante
sur I.
f est strictement monotone sur l’intervalle I si f est uniquement strictement croissante sur I ou
uniquement strictement décroissante sur I.

2.5 Parité

Définition

Soit une fonction f définie sur un intervalle D.

• f est paire si son domaine de définition est symétrique par rapport à zéro et si pour tout x de
l’intervalle de définition f(−x) = f(x) :

∀x ∈ D : −x ∈ D et f(−x) = f(x)

• f est impaire si son domaine de définition est symétrique par rapport à zéro et si pour tout x de
l’intervalle de définition f(−x) = −f(x) :

∀x ∈ D : −x ∈ D et f(−x) = −f(x)

Pour déterminer la parité d’une fonction, il faut procéder de la manière suivante :

Non : Il n’y a pas lieu d’étudier la parité

↗

Df est-il centré en 0 ? f(−x) = f(x) : la fonction est paire

↘ ↗

Oui : On calcule f(−x) pour tout x ∈ Df −→ f(−x) = −f(x) : la fonction est impaire

↘

f(−x) 6= f(x) et f(−x) 6= −f(x) :

la fonction n’est ni paire ni impaire
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Propriétés des courbes représentatives des fonctions paires et impaires :

• La courbe représentative des fonctions paires dans un plan (x ; y) orthogonal est symétrique par
rapport à la droite x = 0.

• La courbe représentative des fonctions impaires dans un plan (x ; y) orthogonal est symétrique par
rapport à l’origine (0 ; 0).

3 Exemples de fonctions

Préciser pour chacune des fonctions suivantes son domaine de définition et étudier sa parité.

f : R → R

x 7→ 2x+ 1

f : R → R+

x 7→ x2

f : R → R+

x 7→ (x− 1)2 + 3
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f : R → R

x 7→ x3

f : R+ → R+

x 7→
√
x

f : R∗ → R

x 7→ 1

x

f : R∗ → R

x 7→ |x|
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f : R → R+

x 7→ ex

f : R∗+ → R

x 7→ lnx

f : R → [−1 ; 1]

x 7→ cosx
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f : R → [−1 ; 1]

x 7→ sinx

4 Opérations sur les fonctions

Soient deux fonctions f et g définies respectivement sur les ensembles Df et Dg .

4.1 Addition de fonctions

La somme des fonctions f et g est la fonction s définie par :

s = f + g : x 7→ s(x) = (f + g)(x) = f(x) + g(x)

Domaine de définition :

On calcule séparément f(x) et g(x) donc x doit appartenir aux deux domaines de définition :

Ds = Df ∩ Dg

Cette opération est :

• commutative : (f + g) = (g + f)

• associative : f + (g + h) = (f + g) + h = f + g + h

Exemple 1.14
Soient f : x 7→

√
x et g : x 7→ 1

x− 2
. On définit h = f + g = x 7→

√
x+

1

x− 2
.

Df = R+ et Dg = R \ {2} donc Dh = R+ ∩ R \ {2} = R+ \ {2}

4.2 Produit de fonctions

Le produit des fonctions f et g est la fonction p définie par :

p = f × g : x 7→ p(x) = (f × g)(x) = f(x)× g(x)

Domaine de définition :

On calcule séparément f(x) et g(x) donc x doit appartenir aux deux domaines de définition :

Dp = Df ∩ Dg

Cette opération est :

• commutative : (f × g) = (g × f)

• associative : f × (g × h) = (f × g)× h = f × g × h

Remarque 1.2
La multiplication d’une fonction par une constante est un cas particulier du produit de fonction :

∀λ ∈ R : λf : x 7→ (λf)(x) = λ× f(x)
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Exemple 1.15
Pour les deux fonctions f et g précédentes, on définit j = f × g = x 7→

√
x

x− 2
.

Dj = R+ ∩ R \ {2} = R+ \ {2}

4.3 Quotient de fonctions

Le quotient de f par g est la fonction q définie par :

q =
f

g
: x 7→ q(x) =

f(x)

g(x)

Domaine de définition :

x doit appartenir aux domaines de définition des deux fonctions f et g, mais il faut en plus que g(x) ne
s’annule pas :

Dq = {x ∈ Df ∩ Dg ; g(x) 6= 0}

Cette opération n’est à priori ni commutative

(
f

g
6= g

f

)
ni associative

(
f
g

h
6= f

g
h

)
.

Exemple 1.16
Soient les fonctions f : x 7→

√
x− 1 définie sur D1 = [1 ; +∞[ et g : x 7→ x− 3 définie sur R.

La fonction
f

g
est la fonction qui à x associe

√
x− 1

x− 3
, et son domaine de définition est [1 ; +∞[\{3} =

[1 ; 3[ ∪ ]3 ; +∞[

4.4 Composition de fonctions

On définit la fonction composition “f puis g”, notée g ◦ f (“g rond f”) par :

g ◦ f : x 7→ (g ◦ f)(x) = g(f(x))

Soit en détaillant :

x
f7→ y = f(x)

g7→ z = g(y) = g ◦ f(x)

Domaine de définition :

La détermination de l’ensemble de définitionDg◦f de la fonction composée est plus délicat que pour l’addition
et la multiplication.
Comme on commence par appliquer la fonction f , les valeurs de x qui sont permises doivent bien évidemment
appartement à Df .
En deuxième lieu on applique la fonction g à f(x). Il faut donc que f(x) appartienne à Dg.
Dg◦f est donc ”l’ensemble des éléments de Df tel que leur image par f appartient à Dg”, ce qui s’écrit :

Dg◦f = {x ∈ Df ; f(x) ∈ Dg}

La composition de fonction :

• est associative : f ◦ (g ◦ h) = (f ◦ g) ◦ h = f ◦ g ◦ h
• n’est pas commutative : g ◦ f 6= f ◦ g
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Exemple 1.17
1. f : x 7→ x2 et g : x 7→ 3x+ 1

• Domaine de définition de g ◦ f :

Df = Dg = R donc il n’y a aucune restriction : Dg◦f = R .

• Détermination de g ◦ f :

x
f7→ x2 g7→ 3x2 + 1 : g ◦ f : x 7→ g ◦ f(x) = 3x2 + 1

2. f : x 7→ 3x+ 4 et g : y 7→ 1

y

• Domaine de définition de g ◦ f :
Df = R et Dg = R∗.

Il faut x ∈ Df =⇒ x ∈ R et f(x) ∈ Dg =⇒ 3x+ 4 6= 0, donc Dg ◦ f = R \
{
−4

3

}
• Détermination de g ◦ f :

x
f7→ 3x+ 4

g7→ 1

3x+ 4
: g ◦ f : x 7→ g ◦ f(x) =

1

3x+ 4

3. f : x 7→ −x et g : x 7→
√
x

• Domaine de définition de g ◦ f :
Df = R et Dg = R+.

Il faut x ∈ Df =⇒ x ∈ R et f(x) ∈ Dg =⇒ −x > 0 =⇒ x 6 0, donc Dg ◦ f = R−

• Détermination de g ◦ f :

x
f7→ −x g7→

√
−x : g ◦ f : x 7→ g ◦ f(x) =

√
−x

Remarque 1.3
Il est important de bien procéder de la manière précédente pour déterminer le domaine de définition. Il
ne faut pas se contenter de déterminer l’ensemble de définition à partir de l’expression de g ◦ f , car dans
certains cas on n’obtient pas la même chose.
Par exemple, considérons les fonctions f : x 7→

√
x et g : x 7→ x2.

On calcule g ◦ f(x) : x 7→ (
√
x)

2
= x.

Si l’on se contente de regarder cette expression de g ◦ f(x), on est tenté de conclure que Dg◦f = R.
Or pour appliquer la fonction f il faut x ∈ R+...

5 Fonction réciproque

5.1 Introduction

La fonction réciproque d’une fonction f , noté f−1 est la fonction qui permet d’“annuler” l’effet de f .
C’est-à-dire que si l’on applique f−1 à f(x), on retombe sur x.

Intéressons nous par exemple au thermomètre à résistance de Platine. Ce thermomètre est en fait une tige
métallique dont la résistance varie en fonction de la température suivant une loi affine :

R : T 7→ R(T ) = aT + b

où a et b sont des coefficients dont les valeurs sont tabulées.

Si l’on veut connaitre la température à partir de la mesure de résistance, il faut trouver une fonction qui,
s’appliquant à R, permette de retomber sur T . Cette fonction serait alors la fonction inverse de la fonction
R.
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5.2 Fonction bijective

Définition

Une fonction f : E → F est dite bijective si tout élément de F est l’image d’un seul élément de E.

Graphiquement, pour tout réel de F la droite d’équation y = y0 coupe la courbe représentative de f en un
seul point.

Exemple 1.18
Voici deux exemples :

La fonction
g : R → R+

x 7→ x2
n’est

pas bijective car chaque élément y de
R+ a deux antécédents par f :

√
y et

−√y.

Par contre la fonction

h : R → R

x 7→ 3x− 1
est bijective.

Propriété :

Si f est une fonction continue sur l’intervalle [a ; b] et strictement monotone sur ]a ; b[ alors f est une
bijection de [a ; b] sur [f(a) ; f(b)] ou [f(b) ; f(a)].

On pourra utiliser cette propriété pour montrer la bijectivité d’une fonction.

Exemple 1.19
• Fonction affine :

f1 : R → R

x 7→ 2x+ 1
: f1 est strictement croissante sur R donc c’est une bijection de R sur R.
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• Fonction valeur absolue :

f2 : R → R

x 7→ |x|
: f2 n’est pas monotone sur R : elle est décroissante sur R− et croissante sur R+.

Ce n’est donc pas une bijection de R sur R.

5.3 Définition de la fonction réciproque

Soit f une fonction bijective de E vers F :

f : E → F

x 7→ y = f(x)

On démontre qu’il existe une fonction de F vers E, elle-même bijective, appelée fonction réciproque et
notée f−1 définie par :

f−1 : F → E

y = f(x) 7→ x

On a donc f−1 ◦ f(x) = f ◦ f−1(x) = x.

Exemple 1.20
Soit la fonction

f1 : R → R

x 7→ 2x+ 1
:

• f1 est strictement croissante sur R donc c’est une bijection de R sur R.

• Soit y tel que y = f(x). On cherche à exprimer x en fonction de y :

y = 2x+ 1 =⇒ x =
y − 1

2

Donc
f−1

1 : R → R

y 7→ y − 1

2

Soit la fonction
f2 : R → R

x 7→ x3
:

• f2 est strictement croissante sur R donc c’est une bijection de R sur R.

• Soit y tel que y = f(x). On cherche à exprimer x en fonction de y :

y = x3 =⇒ x = 3
√
y

Donc
f−1

2 : R → R

x 7→ 3
√
x
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5.4 Propriétés de la fonction réciproque

1 f−1 est monotone et de même sens de variation que f .

2 Dans un repère orthonormé, la courbe représentative de f−1 est la symétrique de la courbe
représentative de f par rapport à la droite d’équation y = x.

Exemple 1.21
Fonction f(x) = x2 et sa réciprise f−1(x) =

√
x sur R+ :

6 Limites et continuité

6.1 Définition de la limite d’une fonction

La notion de limite est assez intuitive : dire que la fonction f a comme limite le nombre l quand x tend vers
a signifie que si x se rapproche très près de a, alors f(x) se rapproche très près de l, ou encore qu’on peut
obtenir f(x) aussi près de l que l’on veut, à condition que x soit suffisamment proche de a.
On note :

lim
x→a

f(x) = l ou f(x) −→
x→a

l

Cette notion s’étend aux limites infinies ou aux limites en l’infini.

6.1.1 Limite finie en l’infini

Si tout intervalle ouvert contenant le réel l contient toutes les valeurs de de f(x) dès que x est assez grand,
alors f(x) tend vers l quand x tend vers +∞ :

lim
x→+∞

f(x) = l

Dans ce cas, la droite horizontale d’équation y = l est l’asymptote de la courbe représentative de f en +∞.

De même si tout intervalle ouvert contenant le réel l contient toutes les valeurs de f(x) dès que x est assez
petit, alors f(x) tend vers l quand x tend vers −∞ :

lim
x→−∞

f(x) = l

Dans ce cas, la droite d’équation y = l est l’asymptote horizontale à la courbe représentative de f en −∞.
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Exemple 1.22

f : x 7→ 3− e−x lim
x→+∞

f(x) = 3

6.1.2 Limite infinie en l’infini

Si tout intervalle ouvert du type ]A,+∞[ contient toutes les valeurs de f(x) dès que x est assez grand, alors
f(x) tend vers +∞ quand x tend vers +∞ :

lim
x→+∞

f(x) = +∞

On a des définitions similaires pour lim
x→+∞

f(x) = −∞, lim
x→−∞

f(x) = +∞ et lim
x→−∞

f(x) = −∞.

Exemple 1.23

f : x 7→ x+ 1 lim
x→+∞

f(x) = +∞

6.1.3 Limite infinie en un point

Soit une fonction f définie sur un intervalle I éventuellement privé de a.
Si tout intervalle de la forme ]A,+∞[ contient toutes les valeurs de f(x) dès que x est suffisamment proche
de a, alors f(x) tend vers +∞ quand x tend vers a :

lim
x→a

f(x) = +∞
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De même si tout intervalle de la forme ]−∞, A[ contient toutes les valeurs de f(x) dès que x est suffisamment
proche de a, alors f(x) tend vers −∞ quand x tend vers a :

lim
x→a

f(x) = −∞

Dans ces deux cas, la droite d’équation x = a est une asymptote verticale de la courbe représentative de la
fonction.

Exemple 1.24

f : x 7→ ln(x+ 2) lim
x→−2

f(x) = −∞

6.1.4 Limite finie en un point

Soit une fonction f définie sur un intervalle I éventuellement privé de a.
Si tout intervalle fini contenant l contient toutes les valeurs de f(x) dès que x est suffisamment proche de
a, alors f(x) tend vers l quand x tend vers a :

lim
x→a

f(x) = l

Dans le cas où f est définie en a, alors lim
x→a

= f(a)

6.2 Limites à gauche et à droite

Il se peut que la limite de la fonction f en a ne soit pas définie, mais que l’on puisse définir une limite quand
x tend vers a par valeurs supérieures à a, et quand x tend vers a par valeurs inférieures à a. On parle alors
respectivement de :

• limite par valeurs supérieures ou de limite à droite et on note lim
x→a+

f(x) ou lim
x→a
x>a

f(x).

• limite par valeurs inférieures ou de limite à gauche et on note lim
x→a−

f(x) ou lim
x→a
x<a

f(x).

Exemple 1.25
Pour la fonction inverse : la limite en 0 n’est pas définie, mais on a lim

x→0−

1

x
= −∞ et lim

x→0+

1

x
= +∞
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6.3 Convergence et divergence

• Lorsque la limite est finie en a (ou en ±∞), on dit que la fonction converge.

• Lorsque la limite est infinie en a (ou en ±∞) ou n’existe pas, on dit que la fonction diverge.

6.4 Calcul de limites

6.4.1 Limites simples

• Les limites sont évidentes lorsque la fonction est définie et continue au point auquel on cherche la
limite : si f est définie en a, alors lim

x→a
f(x) = f(a).

• Les limites des fonction usuelles sur leurs ensembles de définition sont à connâıtre.
Notez que ces limites peuvent être faciles à retenir si vous avez en tête l’allure de la courbe représen-
tative de la fonction.

6.4.2 Opérations sur les limites

Somme de deux fonctions : lim
x→a

(f + g)(x)

XXXXXXXXXXXXX
lim
x→a

g(x)

lim
x→a

f(x)
l +∞ −∞

l′ l + l′ +∞ −∞

+∞ +∞ +∞ non définie

−∞ −∞ non définie −∞

Produit de deux fonctions : lim
x→a

(f × g)(x)

XXXXXXXXXXXXX
lim
x→a

g(x)

lim
x→a

f(x)
l > 0 l < 0 0 +∞ −∞

l′ > 0 l × l′ l × l′ 0 +∞ −∞

l′ < 0 l × l′ l × l′ 0 −∞ +∞

0 0 0 0 non définie non définie

+∞ +∞ −∞ non définie +∞ −∞

−∞ −∞ +∞ non définie −∞ +∞

Quotient de deux fonctions : lim
x→a

f

g
(x)

XXXXXXXXXXXXX
lim
x→a

g(x)

lim
x→a

f(x)
l > 0 l < 0 0+ 0− +∞ −∞

l′ > 0
l

l′
l

l′
0+ 0− +∞ −∞

l′ < 0
l

l′
l

l′
0− 0+ −∞ +∞

0+ +∞ −∞ non définie non définie +∞ −∞

0− −∞ +∞ non définie non définie −∞ +∞

+∞ 0+ 0− 0+ 0− non définie non définie

−∞ 0− 0+ 0− 0+ non définie non définie
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Ces tableaux font apparâıtre des cas où l’on ne connâıt pas la limite. On parle de ”forme indéterminée”.

Il s’agit des cas “0×∞” , “
0

0
” , “
∞
∞

” et “+∞−∞”.

Attention, cette notation n’est par rigoureuse et ne doit pas être écrite dans une copie ! ...

Ces indéterminations peuvent parfois être levées grâce aux différentes techniques que nos présenterons plus
loin.

6.4.3 Limites particulières à connâıtre

• lim
x→0

sin(x)

x
= 1

• lim
x→0

ln(1 + x)

x
= 1

• lim
x→0

ex − 1

x
= 1

• lim
x→0

1− cos(x)

x2
=

1

2

Pour tout entier naturel n :

• lim
x→+∞

ex

xn
= +∞

• lim
x→−∞

xnex = 0

• lim
x→+∞

ln(x)

xn
= 0

• lim
x→0+

xn lnx = 0

• lim
x→+∞

ex

ln(x)
= +∞

6.5 Méthodes pour lever les indéterminations

6.5.1 Quotients de polynômes :

Soit une fonction f(x) =
a0 + a1x+ a2x

2 + ...+ anx
n

b0 + b1x+ b2x2 + ...+ bmxm

• Au voisinage de ±∞, on assimile chaque polynôme à son monôme de plus haut degré non nul, et la
limite est la limite du quotient de ses termes de plus haut degré :

lim
x→±∞

f(x) = lim
x→±∞

anx
n

bmxm
= lim
x→±∞

an
bm

xn−m

On sait calculer cette limite.

• Au voisinage de 0, on assimile chaque polynôme à son monôme de plus bas degré non nul, et la limite
est la limite du quotient de ses termes de plus bas degré.
On sait calculer cette limite.

Exemple 1.26
• lim
x→+∞

1 + x− 3x3

x2 + x− 6
= lim
x→+∞

−3x3

x2
= lim
x→+∞

−3x = −∞

• lim
x→−∞

1 + x− 3x3

x2 + x− 6
= lim
x→−∞

−3x = +∞

• lim
x→0

1 + x− 3x3

x2 + x− 6
= lim
x→0

1

−6
= −1

6

• lim
x→+∞

√
x2 + 1

x− 1
= lim
x→+∞

|x|
√

1− 1/x2

x− 1
= lim
x→+∞

|x|
x

= lim
x→+∞

x

x
= 1

6.5.2 Mettre le terme prépondérant en facteur :

Cette méthode peut être utilisée pour les indéterminations du type “+∞−∞”.

Soit par exemple à calculer lim
x→+∞

(
√

4x2 + x− x).

Il s’agit d’une forme indéterminée du type “+∞ −∞”. On met le terme prépondérant sous la racine en
facteur : √

4x2 + x− x =

√
4x2(1 +

1

4x
)− x = |2x|

√
1 +

1

4x
− x

Donc lim
x→+∞

(
√

4x2 + x− x) = lim
x→+∞

(
|2x|

√
1 + 1

4x − x
)

.
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Comme x tend vers +∞, |2x| = 2x donc :

lim
x→+∞

(
√

4x2 + x− x) = lim
x→+∞

x

(
2

√
1 +

1

4x
− 1

)

lim
x→+∞

(
2
√

1 + 1
4x − 1

)
= 1 et lim

x→+∞
x = +∞,donc :

lim
x→+∞

x(2

√
1 +

1

4x
− 1) = +∞

6.5.3 Factorisation et simplification :

La méthode de factorisation peut être utilisée pour lever les indéterminations du type “
0

0
”.

Elle consiste à trouver une racine commune au numérateur et au dénominateur et à simplifier la fraction.

Exemple 1.27
• On veut calculer lim

x→2

x2 − 5x+ 6

x2 − 6x+ 8
.

On a lim
x→2

(x2 − 5x+ 6) = 0 et lim
x→2

(x2 − 6x+ 8), donc il s’agit d’une forme indéterminée.

Le calcul de ces deux limites montre que 2 est une racine des deux polynômes, donc qu’ils sont
factorisables par (x− 2).
Les factorisations donnent x2 − 5x+ 6 = (x− 2)(x− 3) et x2 − 6x+ 8 = (x− 2)(x− 4).

Donc lim
x→2

x2 − 5x+ 6

x2 − 6x+ 8
= lim
x→2

x− 3

x− 4
=

1

2
.

• lim
x→2

x2 − 4

x− 2
= lim
x→2

(x− 2)(x+ 2)

x− 2
= lim
x→2

x+ 2 = 4

6.5.4 Règle de l’Hospital

Cette méthode permet de lever les indéterminations du type “
0

0
” ou “

∞
∞

”. Cette règle énonce que dans le

cas de ces deux types d’indéterminations :

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)

Dans le cas où ce ne serait pas suffisant, on peut appliquer une nouvelle fois la règle et passer aux dérivées
secondes.

Exemple 1.28
Soit à calculer lim

x→4

x2 − 8x+ 16

x2 − 16
.

Il s’agit d’une indétermination du type “
0

0
”.

L’utilisation de la règle de l’Hospital donne :

lim
x→4

x2 − 8x+ 16

x2 − 16
= lim
x→4

(x2 − 8x+ 16)′

(x2 − 16)′
= lim
x→4

2x− 8

2x
= 0
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7 Dérivation

7.1 Introduction

Une fonction permet d’associer à un nombre x un autre nombre, noté f(x), suivant un “calcul” donné.
Nous nous posons maintenant la question suivante : si le nombre x varie d’une certaine valeur ∆x, de com-
bien varie le nombre f(x) ?

Localement, la pente a d’une fonction au point d’abscisse x0 peut être approchée par la pente de sa tangente :

a ≈ ∆f(x)

∆x
≈ f(x0 + ∆x)− f(x0)

∆x

Cette pente traduit la variation ∆f(x) du nombre f(x) résultant d’une variation ∆x de x :

∆f(x) = a×∆x

Pour avoir la “vraie” valeur de la pente, il faut faire tendre ∆x vers 0 :

a = lim
∆x→0

f(x0 + ∆x)− f(x0)

∆x
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7.2 Nombre dérivé

On appelle nombre dérivé de la fonction f en a le nombre :

f ′(a) = lim
ε→0

f(a+ ε)− f(a)

ε

On utilisera également la notation différentielle :

df

dx
(a) = lim

ε→0

f(a+ ε)− f(a)

ε

Il faut bien sûr que ce nombre existe !
On dit que la fonction f est dérivable en a si le nombre précédent existe.
On dit que f est dérivable sur un intervalle I si elle est dérivable en tout point de cet intervalle.

Le nombre f ′(a) est le coefficient directeur de la tangente à la courbe représentative de f en a.
L’équation de cette tangente est alors :

y = f ′(a)(x− a) + f(a)

7.3 Fonction dérivée

7.3.1 définition

Soit une fonction f dérivable sur un intervalle I.

La fonction dérivée de la fonction f est la fonction f ′, notée aussi
df

dx
, définie sur I, qui a tout x associe le

nombre dérivé en x :

f ′ : x 7→ f ′(x) =
df

dx
(x)

Si la fonction f ′ est elle même dérivable, on peut calculer la dérivée seconde, qui est la dérivée de f ′ :

f ′′(x) = (f ′)′(x)

Cette opération peut se répéter tant que la fonction obtenue est dérivable.
On appelle dérivée n− ieme de la fonction f , et on la note f (n) la fonction obtenue en faisant n dérivations
successives.

7.3.2 Notation différentielle

La notation différentielle est une manière de noter la dérivée, qui traduit très bien la notion de variation
développée dans l’introduction.

Soit une fonction f : x 7→ f(x).
Si x varie d’une quantité infinitésimale dx, alors f(x) varie d’une quantité infinitésimale df(x) donnée par :

df = f ′(x) dx ⇔ f ′(x) =
df

dx

En sciences, on n’utilise pratiquement que la notation différentielle, et il est indispensable que vous appreniez
à l’utiliser.
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7.3.3 Dérivées successives

On peut définir de même les dérivées successives :

f ′′(x) =
d

dx

(
df

dx

)
=

d2f

dx2

f (3)(x) =
d

dx

(
d2f

dx2

)
=

d3f

dx3

...

f (n)(x) =
d

dx

(
df (n−1)

dxn−1

)
=

dnf

dxn

7.4 Dérivées des fonctions usuelles

Domaine de défini-
tion de f

f(x) Domaine de dérivabi-
lité

f ′(x) Remarques / Exemples

R si α ≥ 0

R∗ si α ≤ −1

xα ; α ∈ R
R si α ≥ 0

R∗ si α ≤ −1

α× xα−1

Exemples

f(x) f ′(x)

x3 3x2

1

x4
= x−4 −4x−3 = −

4

x3

√
x = x1/2 1

2
x−1/2 =

1

2
√
x

R∗
1

xn
; n ∈ N+ R∗ −

n

xn+1
Cas particulier de xα avec α ∈ Z−

R k = cste R 0 Cas particulier de xα avec α = 0

R
√
x R∗

1

2
√
x

Cas particulier de xα avec α =
1

2

R∗
1
√
x

R∗ −
1

2x
√
x

Cas particulier de xα avec α = −
1

2

R∗+ ln x R∗+
1

x

R∗+
loga x ; a > 0

a 6= 1

R∗+
1

x ln a
La dérivée se déduit de la relation

loga x =
ln x

ln a

R ex R ex

R ax ; a ∈ R∗+ R ln a× ax La dérivée se déduit de la relation ax =
ex ln a

R cos x R − sin x

R sin x R cos x

R \
{
π

2
+ kπ ; k ∈ Z

}
tan x R \

{
π

2
+ kπ ; k ∈ Z

}
1

cos2 x
= 1 + tan2 x

[−1 ; 1] arccos x ]− 1 ; 1[ −
1

√
1− x2

[−1 ; 1] arcsin x ]− 1 ; 1[
1

√
1− x2

R arctan x R
1

1 + x2

R cosh x R sinh x

R sinh x R cosh x

R tanh x R
1

cosh2 x
= 1 −

tanh2 x

[1 ; +∞[ argch x ]1 ; +∞[
1

√
x2 − 1

R argsh x R
1

√
x2 + 1

]1 ; 1[ argth x ]1 ; 1[
1

1− x2
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7.5 Dérivées et opérations

Soient u et v deux fonctions définies respectivement sur les intervalles Du et Dv, et dérivables sur les inter-
valles Iu et Iv.
On note u′ et v′ leur dérivées.

Domaine de défi-
nition de f

f(x) Domaine de dérivabi-
lité

f ′(x) Remarques / exemple

Du ∩ Dv u(x) + v(x) Iu ∩ Iv u′(x) + v′(x)

Du ∩ Dv u(x)× v(x) Iu ∩ Iv u′(x)× v(x) + v′(x)× u(x)

Exemples

f(x) f ′(x)

x2 cos x 2x cos x− x2 sin x

Du a× u(x) ; a ∈ R Iu a× u′(x) C’est un cas particulier du cas
précédent avec v(x) = a =

cste

Exemples

f(x) f ′(x)

3x2 3× 2x = 6x

3

x4
−

12

x3

Du [u(x)]n Iu n× u′(x)× [u(x)]n−1

f(x) f ′(x)

sin3 x 3 cos x sin2 x

(x2 + x)3 3(2x+ 1)(x2 + x)2

Du \ {x ; u(x) = 0}
1

[u(x)]n
; n ∈ N Iu \ {x ; u(x) = 0} −n×

u′(x)

[u(x)]n+1
C’est la même relation que précédem-

ment avec
1

[u(x)]n
= [u(x)]−n et

−n ×
u′(x)

[u(x)]n+1
= −n × u′(x) ×

[u(x)]−n−1. Seul le domaine de dé-
finition change.

Du ∩ Dv \
{x ; v(x) = 0}

u(x)

v(x)
Iu ∩ Iv \ {x ; v(x) = 0}

u′(x)× v(x)− v′(x)× u(x)

[v(x)]2
On peut aussi le voir comme

le produit u(x) ×
1

v(x)
.

f(x) f ′(x)

tan x =
sin x

cos x

cos2 x+ sin2 x

cos2 x

=
1

cos2 x

ln x

x

1
xx− ln x

x2

=
1− ln x

x2

Du◦v
u ◦ v(x)

= u(v(x))

v′(x)×
[
u′ ◦ v(x)

]
= v′(x)× u′(v(x))

f(x) f ′(x)

cos(x2) 2x× (− sin(x2))

= −2x sin x2

ecos x − sin xecos x

cosh(ln x)
1

x
sinh(ln x){

x ;
x

a
∈ Du

}
u(ax) ; a ∈ R au′(ax) C’est un cas particulier du cas

précédent avec v(x) = ax.

f(x) f ′(x)

cos(3x) −3 sin x

e4x 4e4x

ln(5x)
5

5x
=

1

x
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7.6 Interprétations de la dérivée d’une fonction

On a déjà dit que la dérivée d’une fonction en un point a est le coefficient directeur de la tangente en ce point.

La détermination de la dérivée permet ainsi de déterminer le sens de variation de la fonction :

• f ′(x) ≥ 0 ∀x ∈ I =⇒ f est croissante sur I
f ′(x) > 0 ∀x ∈ I =⇒ f est strictement croissante sur I

• f ′(x) ≤ 0 ∀x ∈ I =⇒ f est décroissante sur I f ′(x) < 0 ∀x ∈ I =⇒ f est strictement décroissante sur I

• Un changement de variation d’une fonction se traduit par un changement de signe de la dérivée :

x0 est un extremum (minimum ou maximum) de la courbe
⇐⇒ f ′(x0) = 0 et f ′(x) change de signe en x0

La tangente à la courbe en ce point est alors une droite horizontale.
La nature de l’extremum est donné par la dérivée seconde :

f ′′(x0) > 0 =⇒ x0 est un minumum

f ′′(x0) < 0 =⇒ x0 est un maximum

La dérivée traduit donc les variations de la fonction.
Si x varie d’une quantité infinitésimale δx autour d’une valeur x0, alors le nombre f(x0) varie d’une quantité
infinitésimale δf(x) = f ′(x0)× δx :

f(x0 + δx) = f(x0) + f ′(x0)δx︸ ︷︷ ︸
δf(x)

Par exemple :

• La vitesse d’un objet en mouvement est la dérivée de sa position par rapport au temps ;

• L’accélération d’un objet en mouvement est la dérivée de sa vitesse par rapport au temps ;

• La vitesse de réaction d’une transformation chimique est la dérivée de la concentration d’un des
produits par rapport au temps ;

• etc...

Cette interprétation de la dérivée est très importante dans la détermination des incertitudes.
Considérons par exemple le calcul des pertes par effet Joule dans une résistance R.
La puissance des ces pertes est donnée par :

P = R× I2

où R est la valeur de la résistance et I l’intensité du courant la parcourant.

La valeur de la résistance étant connue, pour déterminer la valeur de P on procèdera à une mesure du
courant I. Comme toute mesure, celle-ci sera entachée d’une incertitude : on mesurera I = I0 ±∆I.
Il en résultera donc une incertitude sur la valeur de P calculée.
Cette incertitude sera donnée par la relation :

∆P = P ′(I0)×∆I =⇒ ∆P = 2RI0∆I

Exemple 1.29
Calculer avec son incertitude la puissance perdue par effet Joule dans une résistance de (100±2) Ω parcourue
par un courant de 1, 5 A.
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8 Étude d’une fonction

Lorsque l’on étudie une fonction il faut :

• Déterminer son domaine de définition ;

• Déterminer les limites importantes (aux bornes de son intervalle de définition) ;

• Déterminer sa dérivée ;

• Construire un tableau de variation ;

• Éventuellement tracer sa représentation graphique (ou tout au moins une ébauche) en faisant appa-
raitre les valeurs remarquables.
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9 Exercices du chapitre 1

Exercice 1.1
Écrire sous la forme “condensée” les ensembles suivants :

• Ensemble E1 des multiples naturels de 3.

• Ensemble E2 des nombres entiers relatifs impairs.

• Ensemble E3 des entiers positifs qui s’écrivent avec trois chiffres.

• Ensemble E4 des entiers négatifs.

• Ensemble E5 des nombres positifs, exceptés les multiples de 5.

• Ensemble E6 des points du plan situés au dessus de la droite d’équation y = 2x.

• Ensemble E7 des points du plans situés sur le cercle de centre (0 ; 0) et de rayon 3.

Exercice 1.2
Soient les ensembles et intervalles suivants :

F1 = {1 ; 2 ; 3 ; 4}
F2 = {−1 ; −2 ; −3 ; −4}

F3 = {1 ; −1 ; 5}
I1 = [−2 ; 2]

I2 =]− 2 ; 2[
I3 =]0 ; 1]

Exprimer :

• F1 ∩ F2

• F1 ∪ F2

• (F1 ∪ F2) \ F3

• I1 ∪ I2
• I1 ∩ I2
• I1 ∩ I3

• I1 \ I3
• I3 ∩ F1

Exercice 1.3
Traduire sous la forme d’un ensemble les inégalités suivantes :

1. x ∈ R et x > 3

2. x ∈ R et x− 2 6= 0

3. y ∈ N et
y

2
∈ N

4. a ∈ R∗ et
1

a
> 4

5. x ∈ R et x2 6= 9

6. x ∈ R et x2 − 1 6= 0

Exercice 1.4
Déterminer les domaines de définition des fonctions suivantes :

1. f1(x) =
2− x
x2 − 5

2. f2(t) =
√

3− t
3. f3(x) =

√
(x− 1)(x2 − 9)

4. f4(t) =
√
t2 − 4

5. f5(x) =
1√

x2 − 4

6. f6(x) =
√
|x2 − 4|

7. f7(x) =

√
1− 2

x− 3

8. f8(x) =
√

0, 5− cos(x)
Se restreindre à l’intervalle x ∈]− π, π]

Exercice 1.5
Soit les fonctions f : x 7→ 3x+ 1

x
et g : x 7→ 3x− 11

x− 4
.

Déterminer leurs ensembles de définition et vérifier que pour tout réel t 6= 2 on a f(t− 2) = g(t+ 2).

Exercice 1.6
Étudier la parité des fonctions suivantes :

1. f1(x) = x3 − 6x

2. f2(x) =
1

x2 − 2

3. f3(x) = x3 +
1

x2

4. f4(x) =
√
x− 1

5. f5(x) = (x− 1)2
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Exercice 1.7
Pour chacune des fonctions f et g suivantes, déterminer f ◦g et g◦f en précisant leur ensemble de définition :

1. f : x 7→ x+ 1 et g : x 7→ 1

x2 − 1
.

2. f : t 7→
√
−t et g : x 7→ 1

x− 2
.

3. f : x 7→
√
x et g : x 7→ x2.

4. f : x 7→ 1

x− 1
et g : y 7→ 1

y
+ 1.

Exercice 1.8
Pour chacune des fonctions suivantes, déterminer leur fonction réciproque si elle existe (en limitant éven-
tuellement les ensembles de définition et d’arrivée de la fonction).

1.
f1 : R → R

x 7→ 2(x− 1) + 7

2.
f2 : R \

{
−5

2

}
→ R∗

x 7→ 1

2(x− 1) + 7

3.
f3 : [2,+∞[ → R+

x 7→ (x− 2)2

4.
f4 : [−1,+∞[ → R+

x 7→
√
x+ 1

5.
f5 : R → R

x 7→ x3

6.
f6 : ]−∞ ; 1] → R+

x 7→ (x− 1)4

Exercice 1.9
Calculer les limites des fonctions suivantes aux bornes de leur ensemble de définition :

1. g1 : x 7→ −2x− 6

2. g2 : x 7→ 1

x− 5

3. g3 : x 7→ 1

3− x

4. g4 : x 7→ x− 3

x2 − 4

5. g5 : x 7→
√

1− x

6. g6 : x 7→ 1

x2 − 6x+ 8

Exercice 1.10
Calculer les limites suivantes :

1. lim
x→0+

x3 + 2x2 + 7

2x

2. lim
x→0−

x3 + 2x2 + 7

2x

3. lim
x→+∞

x3 + 2x2 + 7

2x

4. lim
x→−∞

x3 + 2x2 + 7

2x

5. lim
x→+∞

x2 + 3

x2 + 6

6. lim
x→−∞

x2 + 3

x2 + 6

7. lim
x→+∞

3x2 + 3

2x3 + 6x2 + 8

8. lim
x→−∞

3x2 + 3

2x3 + 6x2 + 8

9. lim
x→+∞

√
1 + 1

x2

10. lim
x→−∞

√
1 + 1

x2

11. lim
x→0

√
1 + 1

x2

Exercice 1.11
Soit la fonction x : t 7→ x(t) =

√
t+ 2

t2 − 4t+ 4
.

1. Déterminer le domaine de définition de x.

2. Montrer que la courbe représentative de x a une asymptote verticale et une asymptote horizontale
dont vous donnerez les équations.

3. Tracer l’allure de la courbe représentative de x.

Exercice 1.12
Calculer les limites suivantes en utilisant l’une des méthodes permettant de lever les indéterminations :
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1. lim
x→+∞

√
x2 − 7

3x+ 5

2. lim
x→−∞

√
x2 − 7

3x+ 5

3. lim
x→+∞

(√
4x2 + 6x+ 1− x

)
4. lim

x→+∞
(x−

√
x)

5. lim
x→+∞

(√
x+ 1−

√
x
)

Exercice 1.13
Déterminer les dérivées des fonctions suivantes :

1. f1 : x 7→ 3x2 + x− 2

2. f2 : y 7→ 1

y − 1

3. f3 : x 7→
√
x2 + 2x− 1

4. f4 : t 7→ 3t cos t

5. f5 : x 7→ x+ 2

x2 − 6

6. f6 : p 7→ 1

p5

7. f7 : x 7→ 1

(4x− 5)3

8. f8 : x 7→ sin(3x)

9. f9 : x 7→ tan(x2 + 1)

10. f10 : x 7→ 1
3
√
x

11. f11 : x 7→ cosx sinx

12. f12 : x 7→ (x5 + 4x4)2

13. f13 : x 7→
(

1

x
−
√
x

)2

14. f14 : x 7→ sin4(2x)

15. f15 : x 7→ cos(4x) + 1

x2 − 1

Exercice 1.14
Pour chacun des fonctions suivantes, déterminer l’équation de la tangente à la courbe représentative au
point d’abscisse a :

1. f1 : x 7→ x2 ; a = −1

2. f2 : x 7→ 1

x
; a = 2

3. f3 : x 7→ sin(2x) ; a = 0

4. f4 : x 7→ 3x−
√
x+ 1 ; a = 2

Exercice 1.15
Soit une fonction f dérivable sur R telle que f(1) = 2 et f ′(x) =

√
x2 + 1.

Sans chercher à calculer de primitive, déterminer une valeur approchée de f(1, 1).

Exercice 1.16
En physique, quand on a une bobine d’inductance L
et un condensateur de capacité C en série, la charge
q portée par une armature du condensateur est don-
nées par q = Cu où u est la tension aux bornes de
chacun des composants.

On a de plus u = −Ldi

dt
et i =

dq

dt
où i est l’intensité du courant.

Montrer que l’on a
d2q

dt2
+

1

LC
q = 0.

Exercice 1.17
Dans le but de calculer son volume on a mesuré l’arrête d’un cube de 57 cm de côté en commettant une
erreur égale à 0, 05 cm.

On note V le volume du cube calculé et ∆V l’erreur commise sur le calcul.

En admettant que l’on peut approximer ∆V par dV , donner la valeur du volume avec son incertitude.

Exercice 1.18
Soit la fonction x : t 7→ 3t3 − 3t2 − t.
On cherche à résoudre l’équation x(t) = 9.

32 BASTIEN MARGUET, MATHÉMATIQUES



1. Déterminer la dérivée de la fonction x.

2. Étudier le signe de x′(t).

3. Dresser le tableau de variation de x en faisant apparâıtre les valeurs des extrema et les limites.

4. Combien l’équation a-t-elle de solution ?

5. Procéder par tâtonnement afin de trouver une solution de l’équation à 0,01 près.

Exercice 1.19
Pour tout système physique, un état d’équilibre est un état dans lequel l’énergie est extrémale.
Un état d’équilibre est qualifié de stable si lorsque l’on s’écarte faiblement de cet état, le système évolue
spontanément de manière à y revenir. Un état d’équilibre stable correspond à un minimum d’énergie.
Un état d’équilibre est qualifié d’instable si lorsque l’on s’écarte faiblement de cet état, le système évolue
spontanément de manière à s’en éloigner davantage. Un état d’équilibre instable correspond à un maximum
d’énergie.

On s’intéresse à une objet de masse m suspendu à
un ressort de raideur k > 0. Il y a compétition entre
le poids, qui tend à entrâıner l’objet vers le bas et
la force de rappel du ressort, qui est dirigée vers le
haut et le retient.

L’énergie potentielle de l’objet est alors donnée par :

E = −mgx+
1

2
kx2 + E0

où g est l’accélération de la pesanteur, E0 une constante et x la position du ressort.

Déterminer la position d’équilibre stable de la masse pour m = 1, 3 kg et k = 35 N/m−1.

Exercice 1.20
Soit la fonction g dont la courbe représentative est la suivante :

1. Déterminer graphiquement une valeur approchée de g(3).

2. Déterminer graphiquement une valeur approchée de g′(1, 5).

3. Quel est le signe de g′′(2) ?
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Exercice 1.21
Cet exercice est inspiré d’un problème du cours de Thermique (Semestre 2). Vous pouvez essayer de direc-
tement répondre à la dernière question. La question 1 n’est là que pour vous guider.

On cherche à déterminer la température d’une ampoule de 60 W à fil de tungstène.
Un bilan de puissance permet d’obtenir l’équation suivante :

23T + 5, 33.10−8T 4 = 14774

La température du fusion du tungstène est d’environ 3000 K, et on prendra la température ambiante à 293
K.

1. Questions préliminaires :
Soit la fonction f(T ) = 23T + 5, 33.10−8T 4 − 14774.

(a) Calculer f(293) et f(3000).

(b) Déterminer la dérivée de f .

(c) Montrer que f est strictement croissante sur [293 ; 3000].

(d) En déduire que l’équation du bilan de puissance a une unique solution.

2. Procéder par itération afin de déterminer la température de l’ampoule au Kelvin près.

Exercice corrigé 1.1
Soit la fonction h = y 7→ h(y) =

√
4y2 − 12y + 9.

1. Déterminer son ensemble de définition.

2. Montrer que la fonction h peut s’exprimer uniquement à l’aide de la fonction valeur absolue.

1. Il faut 4y2 − 12y + 9 ≥ 0 =⇒ (2y − 3)2 ≥ 0, ce qui est vrai pour tout réel x.

Donc Dh = R .

2. h(y) =
√

4y2 − 12y + 9 =
√

(2y − 3)2 =⇒ h(y) = |2y − 3|

Exercice corrigé 1.2
Soit la réaction chimique suivante :

3BrO− = BrO3 + 2Br−

On part d’une concentration c0 en BrO−, et alors la concentration c(t) en BrO− au cours du temps est
donnée par :

1

c(t)
=

1

c0
+ 3kt où k est une constante

1. Donner l’expression de c(t).

2. Déterminer l’expression de l’instant t0 au bout duquel la concentration en BrO− a été divisée par 2.
Faire l’application numérique avec c0 = 1mol/L et k = 0, 01L.mol−1.s−1.

3. Cette réaction est-elle totale ?
On rappelle qu’une réaction chimique est totale si tous les réactifs ont disparu à la fin de la réaction).

4. On réalise un premier mélange à l’instant t = 0, et un deuxième mélange à l’instant t1 = 10s.

(a) Donner l’expression de la concentration c2(t) en BrO− dans le deuxième mélange.

(b) Donner l’expression de c2 en fonction de la concentration c1 dans le premier mélange.

1. c(t) =
c0

1 + 3kc0t
.

2. t0 est tel que c(t0) =
c0

2
=⇒ 1 + 3kc0t0 = 2 =⇒ t0 =

1

3kc0
.

L’application numérique donne t0 = 33, 3 s .

3. lim
t→+∞

c(t) = 0 donc la réaction est totale.

4. (a) c2(t) = c(t− 10) =
c0

1 + 3kc0(t− 10)
=⇒ c2(t) =

c0

1− 30kc0 + 3kc0t
.

(b)
1

c2(t)
=

1

c0
+ 3kt− 30k et

1

c1(t)
=

1

c0
+ 3kt donc

1

c2(t)
=

1

c1(t)
− 30k =⇒ c2(t) =

c1(t)

1− 30kc1(t)
.
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Exercice corrigé 1.3
Soit la fonction f : x 7→ x2 − x− 6√

x+ 3− 1

1. Vérifier que f(x) =
(x+ 2)(x− 3)√

x+ 3− 1
.

2. Déterminer son ensemble de définition.

3. Calculer lim
x→−2

f(x).

1. (x− 2)(x− 3) = x2 − x− 6 donc on a bien f(x) =
(x+ 2)(x− 3)
√
x+ 3− 1

.

2. Il faut x+ 3 ≥ 0 et
√
x+ 3− 1 6= 0, ce qui conduit à Df = [−3 ; −2[∪]− 2 ; +∞[ .

3. • On doit calculer lim
x→−2

f(x) : 
(x+ 2)(x− 3) = 0

lim
x→−2

(
√
x+ 3− 1) = 0

On a donc une forme indéterminée du type “
0

0
”.

• On multiplie par le binôme conjugué (ou alors on utilise la règle de l’Hospital : même résultat) :

(x+ 2)(x− 3)

(
√
x+ 3− 1)

=
(x+ 2)(x− 3)(

√
x+ 3 + 1)

(
√
x+ 3− 1)(

√
x+ 3 + 1)

=
(x+ 2)(x− 3)(

√
x+ 3 + 1)

x+ 3− 1
= (x− 3)(

√
x+ 3 + 1)

On calcule lim
x→−2

f(x) = lim
x→−2

(x− 3)(
√
x+ 3 + 1) = −5× 2 =⇒ lim

x→−2
f(x) = −10 .

Exercice corrigé 1.4
L’énergie E nécessaire à un poisson pour nager contre un courant de vitesse c dépend de sa propre vitesse
v et de la distance d à parcourir.
On peut modéliser cette énergie par la relation :

E =
av3d

v − c
où a est une constante.

Déterminer, la vitesse v pour laquelle l’énergie dépensée est minimale.

E est minimale si
dE

dv
= 0 et

d2E

dv2
> 0.

• On commence par déterminer la ou les valeurs de v permettant
dE

dv
= 0 :

dE

dv
= a

3v2d(v − c)− v3d

(v − c)2
=
av2d(2v − 3c)

(v − c)2

Donc
dE

dv
= 0 =⇒ 2v − 3c = 0 =⇒ v =

3c

2
.

• Il faut ensuite vérifier que pour cette valeur on a bien
d2E

dv2
> 0 :

dE

dv
=

2adv(v2 − 3cv + 3c2)

(v − c)3

On calcule
dE

dv

(
v =

3c

2

)
= 18d > 0

Donc l’énergie est minimale si v =
3c

d

Exercice corrigé 1.5
Soient f : x 7→ 2x− 1

x− 2
et g : x 7→ x2.

1. Donner leurs ensembles de définition.

2. Déterminer f ◦ g et son ensemble de définition.

3. Déterminer g ◦ f et son ensemble de définition.

1. Df = R \ {2} et Dg = R.

2. f ◦ g : x 7→
2x2 − 1

x2 − 2
et Df◦g = R \ {

√
2 ; −

√
2}.

3. g ◦ f : x 7→
(

2x− 1

x− 2

)2

et Dg◦f = R \ {2}.

Exercice corrigé 1.6
Calculer :
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1. lim
x→0

1− cosx

x2

2. lim
x→0

√
1 + x− 1

x

3. lim
x→−1

x2 + 6x+ 5

x3 + 1

4. lim
x→1

√
x2 + 6x+ 2− 3

x3 − 1

5. lim
x→π

sin 2x

x− π

6. lim
x→+∞

(
√
x2 + 2− 3x)

7. lim
x→+∞

(
√
x2 + 2X + 3− x)

8. lim
x→+∞

(ex − 3xex − x2)

1. lim
x→0

1− cos x

x2
=

1

2
(Multiplier par 1 + cos x au numéra-

teur et au dénominateur).

2. lim
x→0

√
1 + x− 1

x
=

1

2
(Multiplier par la quantité conju-

guée).

3. lim
x→−1

x2 + 6x+ 5

x3 + 1
=

4

3
(Factoriser par (x+ 1)).

4. lim
x→1

√
x2 + 6x+ 2− 3

x3 − 1
=

4

9

5. lim
x→π

sin 2x

x− π
= 2 (Poser h = x− π).

6. lim
x→+∞

(
√
x2 + 2− 3x) = −∞ (Factorisation).

7. lim
x→+∞

(
√
x2 + 2X + 3 − x) = 1 (Multiplication par la

quantité conjuguée).

8. lim
x→+∞

(ex − 3xex − x2) = −∞

Exercice corrigé 1.7
Soit la fonction f : x 7→ x2 + 3x− 1.

La variable x est également donnée par une fonction : x : y 7→ 1

y
.

1. Calculer
df

dx
et

dx

dy
.

2. En déduire
df

dy
(y) grâce à la formule du composition.

3. Déterminer l’expression de la fonction g : t 7→ f ◦ x(t) et déterminer sa fonction dérivée.
Comparer au résultat de la question précédente.

1. •
df

dx
= 2x+ 3

•
dx

dy
= −

1

y2

2.
df

dy
=

df

dx
×

dx

dy
= (2x+ 3)

(
−

1

y2

)
=⇒

df

dy
= −

1

y2

(
2

y
+ 3

)

3. • g(t) =

(
1

t

)2

+ 3×
1

t
− 1 =⇒ g(t) =

1

t2
+

3

t
− 1

• g
′
(t) = −

2

t3
−

3

t2

• On obtient bien le même résultat qu’à la question précédente : g′(t) =
df

dt
(t).

Exercice corrigé 1.8
Dresser le tableau de variation de la fonction f : x 7→

√
x2 − 1.

La fonction est définie sur ]−∞ ; −1[ ∪ ]1 ; +∞[.

Sa dérivée est la fonction f ′ : x 7→
x

√
x2 − 1

.

On obtient le tableau de variation suivant :

x −∞ −1 1 +∞

x − +

√
x2 − 1 + +

f ′(x) − +

+∞ +∞

f ↘ ↗

0+ 0+
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2Fonctions usuelles
Chapitre 2

1 Fonctions trigonométriques (sinus, cosinus, tangente)

Les fonctions trigonométriques sont des fonctions dont la variable est un angle. Tous les résultats que l’on
donne par la suite sont pour des angles exprimés en radians (qui est l’unité naturelle des angles !).
Le sens trigonométrique est le sens inverse des aiguilles d’une montre.

1.1 Définition géométrique

Pour calculer le sinus, le cosinus ou la tangente d’un angle θ, on se place dans un triangle rectangle dont
l’un des angles vaut θ.

Le sinus de θ est égal au rapport du côté opposé sur l’hypoténuse :

sin θ =
AB

AC

Le cosinus de θ est égal au rapport du côté adjacent sur l’hypoténuse :

sin θ =
BC

AC

La tangente de θ est égal au rapport du côté opposé sur le côté adjacent, ou encore le rapport du sinus sur
le cosinus :

tan θ =
AB

BC
=

sin θ

cos θ
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1.2 Cercle trigonométrique

Le cercle trigonométrique est un cercle de rayon 1.
En parcourant le cercle, on peut y lire les valeurs de sinus et cosinus de l’angle entre l’axe horizontal et le
point sur lequel on se situe :

Comme le rayon est de 1, pour chaque angle on a directement la valeur du sinus sur l’axe vertical et la
valeur du cosinus sur l’axe horizontal.
Les angles sont orientés : il sont positifs si on les parcourt dans le sens trigonométrique (sens inverse des
aiguilles d’une montre) et négatifs sinon.

Les valeurs des cosinus et sinus de quelques angles remarquables sont notés sur les cercles suivants :
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1.3 Définitions et propriétés des fonctions trigonométriques

1.3.1 Définition

• Fonction sinus : x 7→ sinx

• Fonction cosinus : x 7→ cosx

• Fonction tangente : x 7→ tanx =
sinx

cosx

1.3.2 Périodicité d’une fonction

Une fonction f : x 7→ f(x) est périodique si elle se répète indéfiniment à l’identique à intervalles réguliers.
Le plus petit motif qui se répète est appelé motif élémentaire.
L’intervalle ∆x correspondant à un motif élémentaire est appelé période de la fonction, et on la note
généralement T . Cela signifie que :

∀x ∈ Df : f(x+ T ) = f(x)

Les fonctions trigonométriques sont des fonctions périodiques puisqu’au minimum à chaque fois que l’on a
parcouru un tour du cercle, on “revient au point de départ”.

Toutes les fonctions périodiques sont des combinaisons des fonctions trigonométriques.

1.3.3 Fonction Sinus

Définition sin : R −→ [−1 ; 1]
x 7−→ sinx

Courbe
représentative

Périodicité

Parité

Dérivée
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1.3.4 Fonction Cosinus

Définition cos : R −→ [−1 ; 1]
x 7−→ cosx

Courbe
représentative

Périodicité

Parité

Dérivée
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1.3.5 Fonction Tangente

Définition
tan : R \

{
(2k + 1)

π

2
; k ∈ Z

}
−→ R

x 7−→ tanx =
sinx

cosx

Courbe
représentative

Périodicité

Parité

Dérivé

1.3.6 Utilisation des nombres complexes

Il peut parfois être intéressant d’utiliser les nombres complexes, notamment pour retrouver les relations
trigonométriques (voir formulaire). Pour rappel :

• cosx = <
(
eix
)

• sinx = =
(
eix
)

• tanx =
=
(
eix
)

< (eix)

1.4 Relations trigonométriques

Ce sont les relations du formulaire. Vous devez savoir qu’elles existent et être capables de les retrouver grâce
au cercle trigonométriques et/ou aux nombres complexes.
Celles qui sont faciles à retrouver grâce au cercle trigonométrique sont les suivantes :

cos(−a) = cos(a) cos(a+
π

2
) = − sin(a) cos(a− π

2
) = sin(a) cos(π + a) = − cos(a) cos(π − a) = − cos(a)

sin(−a) = − sin(a) sin(a+
π

2
) = cos(a) sin(a− π

2
) = − cos(a) sin(π + a) = − sin(a) sin(π − a) = sin(a)

tan(−a) = − tan(a) tan(a+
π

2
) = − 1

tan(a)
tan(a− π

2
) = − 1

tan(a)
tan(π + a) = tan(a) tan(π − a) = − tan(a)
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1.5 Fonctions sinusöıdales

On appelle de manière générale fonction sinusöıdale toute fonction qui s’exprime comme un sinus ou un
cosinus. La forme générale d’une fonction sinusöıdale est :

f : x 7→ f(x) = A sin(ωt+ φ)

• A est la valeur maximale de la fonction.

• φ est la phase à l’origine

• ω est la pulsation. Elle est reliée à la période T par la relation :

ω =
2π

T

1.6 Fonctions trigonométriques réciproques

Les fonctions trigonométriques ne sont pas bijectives ! Pour pouvoir définir des fonctions réciproques, il faut
donc restreindre les fonctions trigonométriques à un intervalle sur lequel elles sont bijectives.

42 BASTIEN MARGUET, MATHÉMATIQUES



1.6.1 Fonction réciproque de la fonction sinus

Définition et propriétés :

Pour définir la fonction arcsin, on restreint la fonction sinus à l’intervalle [−π
2
,
π

2
].

Définition arcsin : [−1, 1] −→ [−π
2
,
π

2
]

y 7−→ x tel que y = sin(x)

Courbe
représentative

Parité

Dérivée arcsin′ : x 7→ 1√
1− x2

Fonction arcsin et calculatrice :

Attention à l’utilisation de la fonction arcsin de la calculatrice !

Imaginons par exemple qu’on ait à résoudre l’équation sinα = 0.5 dans l’intervalle [0 ; 2π].

En utilisant le cercle trigonométrique on trouve deux solutions : x =
π

6
et x =

5π

6
.

Si l’on tape arcsin 0, 5 à la calculatrice on n’obtient qu’une seule solution : x =
π

6
.

Il nous manque donc une solution !

Lorsque vous demandez à votre calculatrice de calculer arcsinx, elle vous affichera le résultat compris dans

l’intervalle [−π
2
,
π

2
], par définition de la fonction arcsin.

Il faut toujours bien garder en tête que l’angle −x+ π est également solution !

y = sinx =⇒ x = arcsin y [2π] ou x = π − arcsin y [2π]
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1.6.2 Fonction réciproque de la fonction cosinus

Définition et propriétés :

Pour définir la fonction arccos, on restreint la fonction cosinus à l’intervalle [0, π].

Définition arccos : [−1, 1] −→ [0, π]
y 7−→ x tel que y = cos(x)

Courbe
représentative

Parité

Dérivée arccos′ : x 7→ − 1√
1− x2

Fonction arccos et calculatrice :

Attention à l’utilisation de la fonction arccos de la calculatrice !
Lorsque vous demandez à votre calculatrice de calculer arccosx, elle vous affichera le résultat compris dans
l’intervalle [0, π], par définition de la fonction arccos.
Il faut toujours bien garder en tête que l’angle −x est également solution !

y = cos =⇒ x = arccos y [2π] ou x = − arccos y [2π]
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1.6.3 Fonction réciproque de la fonction tangente

Définition et propriétés :

Pour définir la fonction arctan, on restreint la fonction sinus à l’intervalle ]− π

2
,
π

2
[.

Définition arctan : ]−∞,+∞[ −→ ]− π

2
,
π

2
[

y 7−→ x tel que y = tan(x)

Courbe
représentative

Parité

Dérivée arctan′ : x 7→ 1

1 + x2

Fonction arctan et calculatrice :

Attention à l’utilisation de la fonction arctan de la calculatrice !
Lorsque vous demandez à votre calculatrice de calculer arctanx, elle vous affichera le résultat compris dans

l’intervalle [−π
2
,
π

2
], par définition de la fonction arctan.

Il faut toujours bien garder en tête que l’angle x+ π est également solution !

y = tanx =⇒ x = arctan y [2π] ou x = π + arctan y [2π]

1.6.4 Égalités utiles

• cos(arcsinx) =
√

1− x2

• tan(arcsinx) =
x√

1− x2

• sin(arccosx) =
√

1− x2

• tan(arccosx) =

√
1− x2

x

• cos(arctanx) =
1√

1 + x2

• sin(arctanx) =
x√

1 + x2
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1.7 Résolution d’équations trigonométriques

Lorsque l’on a à résoudre des équations trigonométriques il faut faire très attention :

• A la périodicité des ces fonctions

• A l’utilisation des fonctions trigonométriques réciproques

Exemple 2.1
On veut résoudre l’équation cos(2x) =

1√
2

sur R :

cos(2x) =
1√
2

=⇒ 2x =
π

4
[2π] ou 2x = −π

4
[2π]

=⇒ x =
π

8
[π] ou x = −π

8
[π]

2 Fonctions exponentielles et fonctions logarithmes

2.1 Fonctions logarithmes

2.1.1 Fonction logarithme népérien

Définition

Définition

La fonction logarithme népérien, notée ln ou plus rarement loge est la primitive de la

fonction x 7→ 1

x
qui s’annule en x = 1 :

ln : R∗+ −→ R
x 7−→ ln(x)

Courbe
représentative

Parité

Dérivée
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Propriétés

Pour tous a, b ∈ R∗+ , pour tout n ∈ R :

• ln(1) =

• lim
a→0+

ln a =

• lim
a→+∞

ln a =

• ln(a× b) =

• ln(an) =

• ln

(
1

a

)
=

• ln
(a
b

)
=

2.1.2 Fonctions logarithmes généralisées

Définitions

Pour tout a > 0 et a 6= 1, on définit la fonction logarithmique de base a :

loga : R∗+ −→ R

x 7−→ loga(x) =
ln(x)

ln(a)

La fonction logarithme la plus courante est la fonction logarithme de base 10, que l’on note log plutôt que
log10 :

log10 : R∗+ −→ R

x 7−→ y = log10(x) = log(x) =
ln(x)

ln(10)
tel que 10y = x

Propriétés

Les propriétés des fonctions loga sont similaires à celles de ln :

∀a > 0, ∀n ∈ R :

• loga(x× y) = loga x+ loga y

• loga(xn) = n loga(x) • loga

(
x

y

)
= loga x− loga y

2.1.3 A propos des fonctions logarithme

Les logarithmes permettent de simplifier des calculs compliqués sur des grands nombres :

• En passant à des nombres moins grands, plus facilement manipulables

Exemple 2.2
Plutôt que de manipuler le nombre 100000, il peut être plus aisé de manipuler le nombre log(100000) = 5.

• En donnant la possibilité de transformer des multiplications difficiles en simples additions.

Exemple 2.3
32 × 5

7
devient log

(
32 × 5

7

)
= 2× 3 + 5− 7

Certains phénomènes physiques se modélisent bien grâce à des fonctions exponentielles. Par exemple, l’in-
tensité du son est couramment exprimée en déciBel, une forme de logarithme, car nos oreilles ne sont pas
linéaires.
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2.1.4 Échelle logarithmique

Les fonctions logarithmiques ont la particularité de crôıtre très lentement.
Les échelles orthonormées ne sont donc pas adaptées à leur représentation graphique, et on utilise plutôt une
échelle logarithmique pour l’axe représentant log 10. La représentation graphique de la fonction x 7→ log x
est alors une droite (voir les TP d’OIS).

Exemple pour la fonction log10 :

En échelle linéaire :

En échelle logarithmique :

Les échelles logarithmiques permettent ainsi de percevoir des évolutions invisibles en échelle linéaire.

Exemple 2.4
Ce graphique représente les superficies (en km2) de quelques pays en échelle linéaire :
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On ne voit rien pour les plus petits pays. Mais si on passe en échelle log, on voit tous les pays :

2.2 Fonctions exponentielles

2.2.1 Fonction exponentielle de base e

Définition

Définition

La fonction exponentielle est la fonction réciproque de la fonction logarithme népérien :

exp : R −→ R∗+
x 7−→ exp(x) ou ex tel que ln(ex) = eln x = x

Courbe
représentative

Parité

Dérivée

e est un nombre, appelé nombre d’Euler ou constante de Néper, tel que ln(e) = 1.

Il vaut e = e1 =
+∞∑
n=0

1

n!
≈ 2, 71828.
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La fonction exponentielle fonctionne “comme les puissances” : ex est égal au nombre e à la puissance x.
Par exemple e3 = e× e× e.
Mais quand on vous a présenté les puissances au collège, on ne les a définies que pour des nombres entiers.
La fonction exponentielle permet de généraliser cette notion aux nombres non entiers : grâce à la fonction
exponentielle on peut maintenant par exemple définir e2,5.

Liens entre les fonctions exp et ln

Les fonction exp et ln sont réciproques l’une de l’autre :

∀x ∈ R : ln(ex) = x
∀x ∈ R+ : exp(lnx)) = x

Propriétés

On retrouve les mêmes propriétés que pour les puissances :

Pour tous a, b ∈ R :

• e0 =

• lim
a→−∞

ex =

• lim
a→+∞

ex =

• ea+b =

• ea

eb
=

• (ea)
b

=

2.2.2 Fonctions exponentielles généralisées

Définitions

La fonction exponentielle de base a (encore appelée “fonction a puissance x”) est définie par :

R −→ R+

x 7−→ ax = ex ln a

Par exemple la fonction exponentielle de base 10 est définie par :

R −→ R
x 7−→ 10x
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Propriétés

∀a > 0 :

• ax+y = ax × ay

• ax−y =
ax

ay
• (ax)y = axy

2.2.3 A propos des fonctions exponentielles

On parle parfois de “Croissance exponentielle”, quand on a une augmentation très rapide d’une grandeur.
En effet, le nombre e n’est pas énorme à priori : e ≈ 2, 718.
Mais on a déjà e10 ≈ 22026, 5.
De nombreux phénomènes physiques varient en exponentielle. En fait, dès que la croissance d’une grandeur
est proportionnelle à cette grandeur elle même il y a une variation exponentielle. Par exemple :

• Le nombre de noyaux radioactifs lors d’une désintégration radioactive ;

• Nombre des charges électriques lors de la décharge électrique d’un condensateur ;

• Vitesse des réactions chimiques du premier ordre ;

• Évolution d’une population de bactéries dans un milieu de culture ;

• ...

3 Fonctions hyperboliques

3.1 Activité d’introduction

PARTIE A

On appelle fonctions cosinus hyperbolique (notée ch) et sinus hyperbolique (notée sh) les fonctions définies
sur R respectivement par :

Pour tout réel x : chx =
ex + e−x

2
et shx =

ex − e−x

2

(0n rencontre aussi les notations cosh et sinh pour ch et sh.)

1. (a) Étudiez la parité des fonctions ch et sh en rédigeant soigneusement.
Qu’en déduit-on pour les courbes de ces deux fonctions ?

(b) Déterminez la fonction ch + sh.

2. (a) Déterminez les limites éventuelles des fonctions ch et sh en +∞ et en −∞.

(b) Montrez que les fonctions ch et sh sont dérivables sur R.
Déterminez les fonctions dérivées ch′ et sh′.

3. (a) Dressez les tableaux de variations des fonctions ch et sh.

(b) Soit la fonction f = ch− sh.

Étudiez le signe des valeurs prises par f et la limite éventuelle de f en +∞.
Que déduire de ces deux résultats pour les courbes des fonctions ch et sh ?

(c) Tracez les courbes des deux fonctions ch et sh dans le repère
(
O ; ~i ; ~j

)
.

La courbe de la fonction ch est appelée châınette, essayez de rechercher (dictionnaire,...) en
quelles circonstances on rencontre cette courbe.

PARTIE B

De façon analogue à la trigonométrie circulaire (avec les fonctions cos et sin), on peut développer une
trigonométrie hyperbolique (avec les fonctions ch et sh).
Dans toute cette partie, a et b sont deux réels quelconques.

1. Calculez cosh2 a+ sinh2 a et cosh2 a− sinh2 a.
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2. Exprimez ch a ch b, sh a sh b, ch a sh b et sh a ch b en fonction de ch(a + b), ch(a − b), sh(a + b) et
sh(a− b).
Déduisez-en ch(a + b), ch(a − b), sh(a + b), sh(a − b), ch(2a) et sh(2a) en fonction de ch(a), ch(b),
sh(a) et sh(b).

3. On appelle fonction tangente hyperbolique (notée th ou tanh) la fonction définie sur R par :

Pour tout réel x : thx =
shx

chx

(a) Justifiez que cette fonction est effectivement définie sur R et étudiez sa parité.

(b) Déterminez les limites éventuelles de la fonction th en +∞ et en −∞.
Qu’en déduit-on ?

(c) Étudiez la dérivabilité de th.
Déterminez la fonction th′, d’une part en fonction de ch, d’autre part en fonction de th.
Dressez le tableau de variations de la fonction th.
Montrez que les courbes des fonctions sh et th ont la même tangente (que vous déterminerez)
en 0.
Tracez la courbe de la fonction th dans le même repère

(
O ; ~i ; ~j

)
que précédemment.

(d) Exprimez th(a+ b), th(a− b) et th(2a) en fonction de th(a) et th(b).

Dans les questions 4, 5 et 6, indépendantes, les notations m et x0 désignent des réels différents.

4. (a) Soit m un réel de ]− 1 ; 1[.
A l’aide d’un corollaire du théorème des valeurs intermédiaires, montrez avec soin que l’équation
th(x) = m a une unique solution x0 sur R.

(b) Montrez que, pour tout réel x : th(x) =
e2x − 1

e2x + 1
.

Exprimez x0 en fonction de m.

5. (a) Soit m un réel quelconque.
A l’aide d’un corollaire du théorème des valeurs intermédiaires, montrez avec soin que l’équation
sh(x) = m a une unique solution x0 sur R.

(b) Exprimez x0 en fonction de m.

6. (a) Soit m un réel de [1 ; +∞[.
A l’aide d’un corollaire du théorème des valeurs intermédiaires, montrez avec soin que l’équation
ch(x) = m a une unique solution x0 sur [0 ; +∞[.

(b) Exprimez x0 en fonction de m.

ei π = −1

Cette relation de Léonard Euler, mathématicien
suisse et... borgne du XVIII ème siècle, fascine car
elle fait intervenir quatre constantes capitales : e, i,
π et l’entier 1.
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3.2 Définitions

3.2.1 Fonction sinus hyperbolique

Définition :

La fonction sinus hyperbolique, notée sinh ou sh est définie par :

sinh : R −→ R

x 7−→ sh(x) =
ex − e−x

2

Courbe
représentative

Parité

Dérivée
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3.2.2 Fonction cosinus hyperbolique

Définition :

La fonction cosinus hyperbolique, notée cosh ou ch est définie par :

cosh : R −→ [1 ; +∞[

x 7−→ ch(x) =
ex + e−x

2

Courbe
représentative

Parité

Dérivée
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3.2.3 Fonction tangente hyperbolique

Définition :

La fonction tangente hyperbolique, notée tanh ou th est définie par :

tanh : R −→ ]− 1 ; 1[

x 7−→ th(x) =
sh(x)

ch(x)
=
ex − e−x

ex + e−x

Courbe
représentative

Parité

Dérivée

3.3 Relations de trigonométrie hyperbolique

Ce sont toutes les relations du formulaire.
Vous devez savoir qu’elles existent et être capables de les retrouver grâce aux définitions des fonctions
hyperboliques.
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3.4 Fonctions hyperboliques réciproques

3.4.1 Fonction réciproque de la fonction sinus hyperbolique

La fonction sinh est bijective sur R, donc on n’a pas de problème à définir sa fonction réciproque.
La fonction réciproque est appelée argument sinus hyperbolique et est notée Argsinh ou Argsh.

Définition : Argsinh : R −→ R
x 7−→ y = Argsh(x) tel que sh(y) = x

Courbe
représentative

Parité

Dérivée
Argsinh′ : R −→ R

x 7−→ 1√
x2 + 1

Forme
logarithmique

Argsh(x) = ln(x+
√
x2 + 1)
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3.4.2 Fonction réciproque de la fonction cosinus hyperbolique

La fonction cosh n’étant pas bijective sur R, pour définir sa fonction réciproque il faut se limiter à un
intervalle sur lequel elle l’est.
On se limite à la fonction cosh définie sur R+. La fonction réciproque de cette fonction est appelée argu-
ment cosinus hyperbolique et est notée Argcosh ou Argch.

Définition : Argcosh : [1,+∞[ −→ R+

x 7−→ y = Argch(x) tel que ch(y) = x

Courbe
représentative

Parité

Dérivée
Argcosh′ : ]1,+∞[ −→ R+

x 7−→ 1√
x2 − 1

Forme
logarithmique

Argch(x) = ln(x+
√
x2 − 1)

Attention à l’utilisation de la fonction Argcosh de la calculatrice !
Lorsque vous demandez à votre calculatrice de calculer Argcosh(x), elle vous affichera le résultat compris
dans l’intervalle [0,+∞[, par définition de la fonction Argcosh. Il faut toujours bien garder en tête que −x
est également solution !
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3.4.3 Fonction réciproque de la fonction tangente hyperbolique

La fonction tanh est bijective sur R, donc on n’a pas de problème à définir sa fonction réciproque. La fonction
réciproque est appelée argument tangente hyperbolique et est notée Argtanh ou Argth.

Définition : Argtanh : ]− 1 ; 1[ −→ R
x 7−→ y = Argth(x) tel que th(y) = x

Courbe
représentative

Parité

Dérivée
Argtanh′ : ]− 1 ; 1[ −→ R

x 7−→ 1

1− x2

Forme
logarithmique Argth(x) =

1

2
ln

(
1 + x

1− x

)
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4 Exercices du chapitre 2

Exercice 2.1
Déterminer la période et l’ordonnée à l’origine des fonctions suivantes :

1. f1 : x 7→ sin(2x)

2. f2 : x 7→ sin
(
x+

π

2

) 3. f3 : x 7→ 1

2
cos
(x

4

)
4. f4 : x 7→ tan (3x− π)

Exercice 2.2
Déterminer le domaine de définition et calculer les dérivées des fonctions suivantes :

1. f1 : x 7→ sin(3x− 2)

2. f2 : t 7→ tan

(
t− 5

3

)
3. f3 : x 7→ sinx− cosx

sinx+ cosx
4. f4 : y 7→ tan2(3y)

5. f5 : x 7→ 1

cos(
√
x)

6. y : x 7→ x+ 1

sinx

7. x : t 7→ cos(2t2 + 7)

Exercice 2.3
Soit la fonction f : x 7→ arctan

(
x+ a

1− ax

)
où a est un nombre réel.

1. Donner le domaine de définition de f en précisant la condition sur a.

2. Montrer que
df

dx
(x) = arctan′(x).

Exercice 2.4
Soit la fonction f : x 7→ f(x) = 3 cos

(
2x− π

4

)
.

1. Déterminer son domaine de définition Df .

2. Déterminer sa période.

3. Déterminer l’ensemble des solutions de l’équation f(x) = 0 sur Df puis sur l’intervalle [0 ; π].

4. Quelle est la valeur maximale M prise par f(x) ?
Déterminer l’ensemble des solutions de l’équation f(x) = M .

5. Quelle est la valeur minimale m prise par f(x) ?
Déterminer l’ensemble des solutions de l’équation f(x) = m.

6. Grâce aux questions précédentes, tracer l’allure de la courbe représentative de cette fonction.

7. Déterminer la dérivée de f .

Exercice 2.5
Résoudre les équations suivantes (donner la solution exacte si possible, une solution approchée sinon) :

1. sin(2x− π) = 0 sur R
2. tan(3x)− 1 = 0 sur R
3. cos(3x) + 1 = 0 sur [0 ; 2π[

4. cosx = 0, 45 sur [0 ; 2π[

5. sin(2x) = −0, 5 sur [0 ; 2π[

6. tan(2x) = 10 sur [−π ; π[

7. sinx =
√

3 cosx sur [0 ; 2π[

Exercice 2.6
1. Soit la fonction x 7→ sin(x)− x.

(a) Dresser son tableau de variation.

(b) En déduire que pour tout x ∈ R+, sin(x) 6 x.

2. Montrer que pour tout x ∈ R, cos(x) > 1− x2

2
.
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Exercice 2.7
Le but de cet exercice est de justifier la conformation stable de la molécule d’éthane.

On appelle angle dièdre l’angle θ entre deux hydrogènes appartenant aux deux carbones (voir schéma
ci-dessous).

L’énergie molaire de la molécule en fonction de l’angle dièdre peut en première approximation être modélisée

par la fonction E(θ) = E0

[
− sin

(
3θ +

3π

2

)
+ 1

]
avec E0 = 1, 5 kcal/mol.

1. Sur quel intervalle est-il intéressant d’étudier E(θ) ?

2. Tracer E(θ) sur cet intervalle en faisant apparâıtre les valeurs particulières.

3. La conformation stable de la molécule est celle pour laquelle cette énergie est minimale.
Déterminer la ou les valeurs de θ correspondant à cette conformation stable.
Dessiner la molécule dans cette conformation et justifier l’appellation de conformation décalée.

4. Déterminer la ou les valeurs de θ correspondant à la conformation la moins stable.
Dessiner la molécule dans cette conformation et justifier l’appellation de conformation éclipsée.

Exercice 2.8
Déterminer le domaine de définition et les dérivées des fonctions suivantes :

1. f1 : t 7→ ln(t2)

2. f2 : x 7→ ln(x2 − 1)

3. f3 : t 7→ ln

(
1

t+ 2

) 4. f4 : x 7→ ln

(
x− 1

x+ 2

)

5. f5 : y 7→ ln
(
(y − 1)2

)
6. x : t 7→ cos(ln t)

7. f7 : t 7→ log(t2)

8. f8 : x 7→ log3(1− x)

Exercice 2.9
Déterminer le domaine de définition et les dérivées des fonctions suivantes :

1. f1 : x 7→ e3x

2. f2 : t 7→ et
2−2

3. f3 : x 7→ (1 + ex)3

4. f4 : x 7→ esin x

5. f5 : x 7→ 1

1 + e−3x

6. f6 : t 7→
√

4− ex

7. f7 : x 7→ 5x

8. f8 : t 7→ 3t−1

Exercice 2.10
Soit φ = ln(a2b3)− ln(

4
√
a3b5) + ln(

3
√
b2) + ln(

√
a7b3).

Exprimer φ en fonction de ln a et ln b.

Exercice 2.11
Résoudre les équations ou systèmes d’équations suivants :

1. ln

((
x+ 1

x− 1

)2
)

= 3

2.

(
4

9

)x(
8

27

)1−x

=
2

3

3. x
√
x = (

√
x)x

Remarque : 00 n’est pas défini.

4. log3 x =
1

2
+ log9(3x+ 12)

5. log(x2 − 1) = log(2x− 1)− log 2

6. 22x − 3x−1/2 = 3x+1/2 − 22x−1

7.

{
8x = 10y
2x = 5y

8.


ln

(
x2

y3

)
= 9

x+ 3y − 2z = −1

ln(xy5) = −17

2
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Exercice 2.12
1. Faire l’étude de la fonction f1(x) = x− ln(1 + x).

2. Faire l’étude de la fonction f2(x) = ln(1 + x)− x+
1

2
x2

3. Établir pour tout x > 0 l’encadrement suivant :

x− 1

2
x2 6 ln(1 + x) 6 x

4. Montrer alors que ∀x > 0 on a x ln

(
1 +

1

x

)
6 1.

5. En déduire que

(
1 +

1

x

)x
6 e.

Exercice 2.13
Soit un condensateur de capacité C.
On le charge à une tension E > 0, puis on le laisse se décharger dans un résistor de résistance R.
La tension à ses bornes en fonction du temps est alors donnée par :

u(t) = Ee−
t
RC

On rappelle que R et C sont des constantes positives.

1. Quelle est la tension à t = 0 ?

2. La tension augmente-t-elle ou diminue-t-elle au cours du temps ?

3. Quelle est la valeur u0 atteinte par la tension u si on laisse le condensateur se décharger pendant très
longtemps ?

4. (a) Déterminer l’équation de la tangente à la courbe u(t) en t = 0.

(b) Déterminer en fonction de R et C l’expression de l’instant τ auquel cette tangente coupe la
courbe d’équation u = u0.

(c) Donner l’expression de la durée t1 nécessaire pour que le condenseur soit déchargé à 90%,
c’est-à-dire que la tension est égale à 10% de sa valeur initiale

Exercice 2.14
On chauffe une citerne initialement à la température de 20◦C par une résistance.
La température θ est donnée en fonction du temps t par la fonction θ(t) vérifiant l’équation :

dθ

dt
= a− bθ(t)

avec a = 2, 088.10−2 ◦C.s−1 et b = 2, 32.10−4 s−1.

1. Déterminer α et β pour que la fonction θ(t) = αe−bt + β soit solution.

2. Déterminer la durée de chauffe nécessaire pour obtenir une température de 80◦C.

Exercice 2.15
Soit un nénuphar qui pousse sur un étang de 500 m2. Sa croissance est telle qu’il double de taille chaque
jour, et qu’il couvre la totalité de son étang en 100 jours.

1. Quelle est la taille du nénuphar au 99è jour ? Au 98è jour ?

2. Exprimer la taille T (J) du nénuphar au jour J .

Exercice 2.16
Calculer les limites suivantes :

1. lim
x→0+

x sin(x)

3x2

2. lim
x→+∞

ex

3x2 + x− 6

3. lim
x→+∞

xe3x

x2 + 1

4. lim
x→+∞

ln(x)

3x2 + x− 6

5. lim
x→1

ln(x)

x− 1

6. lim
x→0

1− cos(3x)

x
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7. lim
x→∞

sin2(x)

x
8. lim

x→0

ln(1 + 2x)

4x2

Exercice 2.17
Déterminer le domaine de définition et la dérivée de chacune des fonctions suivantes :

1. f1 : t 7→ cosh(2t− 1)

2. f2 : x 7→ 1

tanhx
3. f3 : y 7→

√
sinh(2y)

4. f4 : x 7→ ln(sinhx)

5. f5 : x 7→ cosh(x2)

6. x : m 7→ tanh(
√

3m− 7)

Exercice 2.18
Soient x > 1 et y > 0 tels que x = cosh(y).

1. Montrer que 2x = ey + e−y et en déduire que e2y − 2xey + 1 = 0.

2. On pose Y = ey.

(a) Déterminer l’équation du seconde degré à laquelle obéit Y .

(b) Monter que cette équation a à priori deux solutions Y1 =
2x+ 2

√
x2 − 1

2
= x +

√
x2 − 1 et

Y2 =
2x− 2

√
x2 − 1

2
= x−

√
x2 − 1.

(c) Vérifier que Y1 ≥ 1.

(d) En utilisant l’identité remarquable (x +
√
x2 − 1)(x −

√
x2 − 1) = 1, montrer que Y2 ne peut

pas être solution.

3. En déduire que l’on peut écrire : Argch(x) = ln(x+
√
x2 − 1).

C’est l’écriture logarithmique de la fonction argument cosinus hyperbolique.

Exercice corrigé 2.1
Soit la fonction g : x 7→ g(x) = 3 sin

(
2π

3
(x− 2)

)
− 5.

1. Déterminer la période, la valeur maximale et la valeur minimale de g(x).

2. Tracer la courbe représentative de g en faisant apparaitre les valeurs particulières.

1. • Période T :
2π

T
=

2π

3
=⇒ T = 3 .

• Valeur maximale M : M = 3− 5 =⇒ M = −2 .

• Valeur minimale m : m = −3− 5 =⇒ m = −8 .

2. • La valeur max est atteinte pour
2π

3
(x− 2) =

π

2
+ 2kπ =⇒ x =

11

4
+ 3k = ... ; −

3

4
; −

1

4
;

11

4
;

23

4
;

35

4
; ....

• La valeur min est atteinte pour
2π

3
(x− 2) = −

π

2
+ 2kπ =⇒ x =

5

4
+ 3k = ... ; −

19

4
; −

7

4
;

5

4
;

17

4
;

29

4
; ....

• La valeur moyenne −5 est atteinte pour
2π

3
(x− 2) = kπ =⇒ x = 2 +

3

2
k = ... ; −1 ;

1

2
; 2 ;

7

2
; 5 ; ....

Ce qui donne :
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Exercice corrigé 2.2
Faire l’étude des fonctions suivantes :

1. f1 : x 7→ e2x+3

2. f2 : x 7→ e
1
x

3. f3 : x 7→ ex
3−x

1. f1 : x 7→ e2x+3 :

x −∞ +∞
f ′(x) = 2e2x+3 +

+∞
f ↗

−∞

2. f2 : x 7→ e
1
x

x −∞ 0 +∞
f ′(x) = − 1

x2 e
1
x − ‖ −

1 ‖ +∞
f ↘ ‖ ↘

0 ‖ 1

3. f3 : x 7→ ex
3−x

x −∞ − 1√
3

1√
3

+∞

f ′(x) = (3x2 − 1)ex
3−x + 0 − 0 +

e
2

3
√

3 +∞
f ↗ ↘ ↗

0 e
− 2

3
√

3

Exercice corrigé 2.3
On se trouve dans une ville de 10 000 habitants.
A 8h du matin, 100 personnes apprennent une nouvelle, et commencent à la répandre.
On note dès lors y(t) (0 ≤ y(t) ≤ 1) la proportion de la population connaissant cette nouvelle à l’instant t,
l’origine des temps étant prise à 8h (t = 0 à 8h).

On propose une modélisation de la propagation de la rumeur où la vitesse de propagation
dy

dt
est propor-

tionnelle à la fois à la proportion de la population qui connait la nouvelle et à la proportion de la population
qui ne la connâıt pas, le coefficient de proportionnalité étant de 1, 15 h−1.

1. Justifier que y(t) est solution de l’équation différentielle
dy

dt
= 1, 15y(t) − 1, 15(y(t))2 et donner la

valeur de y(0).

2. On pose y(t) =
1

z(t)
.

Montrer que la fonction z obéit à l’équation différentielle
dz

dt
= 1, 15(1− z(t)).

3. Montrer que ∀k ∈ R la fonction z(t) = 1+ke−1,15t est solution de l’équation précédente et en déduire
l’expression de y(t) (utiliser la condition initiale pour trouver k).

4. Toute la population finira-t-elle par être au courant ?

5. Combien de personnes connaissent la nouvelle à midi ?

6. Calculer l’heure à laquelle 99 % de la population sera au courant.

1. • La proportion de la population au courant est y(t).
La proportion de la population qui n’est pas au courant est 1− y(t).

On a donc
dy

dt
= 1, 15× y(t)× (1− y(t)) =⇒

dy

dt
= 1, 15y(t)− 1, 15(y(t))

2

• y(0) =
100

10000
=⇒ y(t) = 10

−2

2. • y(t) =
1

z(t)

•
dy

dt
=

d

dt

1

z(t)
= −

dz

dt

1

(z(t))2

On remplace dans l’équation différentielle précédente :

dy

dt
= 1, 15y(t)− 1, 15(y(t))2

=⇒ −
dz

dt

1

(z(t))2
= 1, 15

1

z(t)
− 1, 15

1

(z(t))2

=⇒
dz

dt
= −1, 15z(t) + 1, 15

=⇒
dz

dt
= 1, 15(1− z(t))
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3. • Soit z(t) = 1 + ke−1,15t ; k ∈ R.

On calcule
dz

dt
(t) = −1, 15ke−1,15t = −1, 15(z(t)− 1) = 1, 15(1− z(t)).

Cette fonction est donc bien solution de l’équation précédente.

• On en déduit y(t) =
1

1 + ke−1,15t
.

La constante k peut être déterminée grâce à la condition initiale :

y(0) = 10
−2

=⇒
1

1 + k
=

1

100
=⇒ k = 99

Donc finalement y(t) =
1

1 + 99e−1,15t

4. lim
t→∞

y(t) = 1 donc toute la population finira par être au courant si l’on attend suffisamment longtemps.

5. A midi, t = 4 h.

y(4) =
1

1 + 99e−1,15×4
= 0, 5 donc la moitié de la population est courant, soit 5 000 personnes.

6. Soit T l’instant auquel 99 % de la population sera au courant :

y(T ) = 0, 99

=⇒
1

1 + 99e−1,15T
= 0, 99

=⇒ 1 + 99e−1,15T =
1

0, 99

=⇒ e−1,15T =
1

992

=⇒ −1, 15T = −2 ln 99

=⇒ T =
2 ln 99

1, 15

L’application numérique donne T = 7, 99h ≈ 8h.
Donc 99 % de la population sera au courant à 15h.

Exercice corrigé 2.4
Faire l’étude des fonctions suivantes :

1. g : x 7→ cosh(2x− 1)

2. f : t 7→ 1

sinh(x2 − 1)

1. g : x 7→ cosh(2x− 1) :

x −∞ frac12 +∞
g′(x) = 2 sinh(2x− 1) − 0 +

+∞ +∞
g ↘ ↗

1

2. f : t 7→
1

sinh(x2 − 1)
:

x −∞ −1 0 1 +∞

f ′(x) = −−
2x cosh(x2 − 1)

sinh2(x2 − 1)
+ ‖ + 0 − ‖ −

+∞ ‖ sinh(−1) ‖ +∞
f ↗ ‖ ↗ ↘ ‖ ↘

0 ‖ −∞ −∞ ‖ 0

Exercice corrigé 2.5
Montrer que ∀n ∈ R, on a (ch(x) + sh(x))n = ch(nx) + sh(nx).

On a d’une part :

(ch(x) + sh(x))n =

(
ex + e−x

2
+
ex − e−x

2

)n
= (ex)n

= enx

Et d’autre part :

ch(nx) + sh(nx) =
enx + e−nx

2
+
enx − e−nx

2
= enx

Donc on a bien (ch(x) + sh(x))
n

= ch(nx) + sh(nx) .
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Exercice corrigé 2.6
On montre que sur R+ on peut mettre les fonctions argument du cosinus hyperbolique et argument du sinus

hyperbolique sous la forme Argchx = ln(x+
√
x2 − 1) et Argshx = ln(x+

√
x2 + 1).

Démontrer les expressions des dérivées de ces deux fonction arguments hyperboliques.

• Pour la fonction Argch :

Argchx = ln(x+
√
x2 − 1)

=⇒ Argch′x =

1 +
2x

2
√
x2 − 1

x+
√
x2 − 1

=⇒ Argch′x =

√
x2 − 1 + 1

√
x2 − 1(x+

√
x2 − 1)

=⇒ Argch
′
x =

1
√
x2 − 1

• Pour la fonction Argsh :

Argshx = ln(x+
√
x2 + 1)

=⇒ Argsh′x =

1 +
2x

2
√
x2 + 1

x+
√
x2 + 1

=⇒ Argsh′x =

√
x2 + 1 + 1

√
x2 + 1(x+

√
x2 + 1)

=⇒ Argsh
′
x =

1
√
x2 + 1

Exercice corrigé 2.7
Faire l’étude complète des fonctions suivantes :

1. f : x 7→
√

cos(x) sur l’intervalle [−π, π].

2. g : x 7→ 1

sin2(x)− 1
sur l’intervalle [−π, π].

1. f : x 7→
√

cos(x) en se limitant à l’intervalle [−π, π].

−
π

2
0

π

2

f ′(x) = −
sin x

2
√

cos x
+ 0 −

1

f ↗ ↘

0 0

2. g : x 7→
1

sin2(x)− 1
sur l’intervalle [−π, π].

x −π −
π

2
0

π

2
π

‖ ‖

g′(x) = −
2 cos x sin x

(sin2 x− 1)2
− 0 + 0 − 0 +

‖ ‖

−1 ‖ −1 ‖ −1

g ↘ ‖ ↗ ↘ ‖ ↗

−∞ ‖ −∞ −∞ ‖ −∞ ↗

Exercice corrigé 2.8
Lorsque l’on charge un condensateur initialement déchargé avec une tension continue E, la tension aux

bornes du condensateur évolue au cours du temps selon la loi u(t) = E
[
1− e− t

τ

]
avec τ = RC où R est la

résistance interne du condensateur et C sa capacité.

1. Calculer u(0).

2. Quelle est la valeur maximale atteinte par u(t) ? Quand cette valeur est-elle atteinte ?

3. Tracer l’allure de u(t) et faire apparaitre les éventuelles asymptotes.

4. Déterminer l’équation de la tangente à la courbe u(t) à l’instant t = 0 et la tracer sur le schéma.

5. Déterminer le temps auquel la tangente coupe l’asymptote.
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6. On considère que le condensateur est chargé lorsque la tension a ses bornes a atteint 90 % de sa valeur
maximale.
Déterminer en fonction de τ la durée t0 de charge du condensateur.

1. u(0) = 0 .

2. La fonction u(t) est strictement croissante, donc la valeur maximale est atteinte quand t tend vers +∞.

umax = lim
t→+∞

u(t) =⇒ umax = E

3.

4. u(0) = 0 et u′(0) =
E

τ
donc la tangente à l’origine a pour équation y =

E

τ
t .

5. On cherche T tel que
E

τ
T = E =⇒ T = τ .

C’est une caractéristique de la constante de temps.

6. u(t0) = 0, 9E =⇒ E
(

1− e−t0/τ
)

= 0, 9E =⇒ e−t0/τ = 0, 1 =⇒ t0 = − ln(0, 1)τ ≈ 2, 3τ

Exercice corrigé 2.9
Résoudre dans R :

1. ex+2 = ex
2

2. ln(x+ 2) + ln(x− 2) = ln(x2 − 4)

3. e2x−1 < ex
2

4. ln(1− 2x) + ln(x+ 1) ≥ ln(2x2 + x+ 3)

1. S = {−1 ; 2}

2. S =]2 ; +∞[

3. S = R \ {1}

4. S =

{
−

1

2

}

Exercice corrigé 2.10
Déterminer les ensembles de définition des fonctions suivantes :

1. f(x) =
√

1 + lnx 2. g(x) =
√
e2x − 4

1. Df = [e−1 ; +∞[ 2. Dg = [ln 2 ; +∞[

Exercice corrigé 2.11
A l’aide du formulaire, mettre les expressions suivantes sous la forme A cos(x− φ) :
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1. cos(x) + sin(x)

2. cos(x)−
√

3 sin(x)

1. On a :

cos(x) + sin(x) = cos(x) + cos

(
x−

π

2

)
= 2 cos

(
x+ x− π/2

2

)
cos

(
x− x+ π/2

2

)
= 2 cos

(
x−

π

4

)
cos

(
π

4

)
= 2 cos

(
x−

π

4

) √
2

2

Donc cos(x) + sin(x) =
√

2 cos

(
x−

π

4

)
2. On a :

cos(x)−
√

3 sin(x) = 2

[
1

2
cos x−

√
3

2
sin x

]
= 2

[
cos

(
−
π

3

)
cos x+ sin

(
−
π

3

)
sin x

]

Donc cos(x)−
√

3 sin(x) = 2 cos

(
x−

π

3

)

Exercice corrigé 2.12
Soit y = ab avec a = ex

2

et b =
1

x
ln(x1/x).

Exprimer très simplement y en fonction de x.

• a = ex
2

• b =
1

x
ln(x1/x) =

1

x2
ln x

• y = ab =
(
ex

2
) 1
x2 ln x

= exp

(
x2 ×

1

x2
ln x

)
= exp(ln x) =⇒ y = x

Exercice corrigé 2.13
Soient a et α deux constantes réelles non nulles.
Soit le système suivant, de variables x et y :{

ch(x) + ch(y) = 2 a ch(α)
sh(x) + sh(y) = 2 a sh(α)

On cherche à résoudre ce système, c’est-à-dire exprimer x et y en fonction de a et α.

1. Montrer que ex = 2aeα − ey et ex =
1

2ae−α − e−y
.

En déduire l’expression de y en fonction de a et α.

2. Donner l’expression de x.

1. • On part du système :

{
ch(x) + ch(y) = 2ach(α) (L1)
sh(x) + sh(y) = 2ash(α) (L2)

=⇒
{

ex + ey = 2aeα (L1 + L2)

e−x + e−y = 2ae−α (L1 − L2)
=⇒

{
ex = 2aeα − ey
e−x = 2ae−α − e−y

Comme e−x =
1

ex
on a bien e

x
= 2ae

α − ey =
1

2ae−α − e−y
.

• ex = 2aeα−ey =
1

2ae−α − e−y
=⇒ 4a2 +1−2ae−α+y−2aeα−y = 1 =⇒ cosh(α−y) = 2a =⇒ y = α− argcosh(a)

2. La méthode est la même.

En partant du deuxième système ci-dessus on a ey = 2aeα − ex =
1

2ae−α − e−x
=⇒ 4a2 + 1 − 2ae−α+x − 2aeα−x = 1 =⇒

cosh(α− x) = 2a =⇒ x = α− Argch(a)
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3Intégration
Chapitre 3

1 Définition d’une intégrale

1.1 Intégrale et aire sous la courbe

Soit une fonction f continue sur l’intervalle [a ; b] et C sa courbe représentative dans le repère (O,~i,~j).

L’intégrale de f entre a et b est notée

∫ b

a

f(t)dt et est définie comme suit :

• Si f est positive sur [a ; b], intégrale de f entre a et b est l’aire délimitée par C et les droites verticales
d’équations x = a et x = b :
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• Si f est négative sur [a ; b], l’intégrale de f entre a et b est l’opposé de l’aire précédente :

• Si f change de signe sur [a ; b], l’intégrale de f entre a et b est la somme algébrique des aires comptées
positivement et des aires comptées négativement :

Exemple 3.1
Soit la fonction constante f : x 7→ k avec k = cste définie sur un intervalle I.

Alors ∀a, b ∈ I :

∫ b

a

f(t)dt = k × (b− a)

Remarque 3.1
La valeur de l’intégrale n’est pas nécessairement en m2 ! ! L’unité dépend des unités de x et de f(x)...
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1.2 Sommes de Darboux

Soit une fonction f , et dont la représentation graphique serait la suivante :

On divise l’intervalle [a, b] en n intervalles [xi, xi+1] avec : i ∈ {0, 1, ..., n− 1}
x0 = a
xn = b

On appelle un tel découpage une subdivision de [a, b] et on la note σ = [a, x1, x2, ..., xn−1, b].

Remarque 3.2
• Il existe une infinité de subdivisions possibles pour un même intervalle ;

• Les intervalles [xi, xi+1] n’ont pas nécessairement la même taille.

Sur un intervalle [xi, xi+1] on note mi = f(xi) (valeur de la fonction “à gauche”) et Mi = f(xi+1) (valeur
de la fonction “à droite”) (voir schéma précédent).
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La subdivision s’apparente à remplacer sur chaque intervalle [xi, xi+1] la fonction par une fonction en
escalier :

Soit par la valeur “à gauche” : Soit par valeur “à droite” :
f(xi < x < xi+1) = mi f(xi < x < xi+1) = Mi

On définit alors les sommes suivantes, appelées sommes de Darboux :

sσ =
n∑
i=0

(xi+1 − xi)×mi Sσ =
n∑
i=0

(xi+1 − xi)×Mi

Les sommes de Darboux sont les sommes des aires des rectangles correspondant à chaque marche.

1.3 Intégrale de Riemann

Si dans les sommes de Darboux on fait tendre n vers l’infini, la fonction en escalier précédente se confond
avec la fonction f et les sommes de Darboux se rejoignent et se confondent avec l’aire sous la courbe.
La fonction f est dite intégrable au sens de Riemann si :

lim
n→∞

sσ = lim
n→∞

Sσ

et alors on appelle intégrale de la fonction f entre a et b cette limite commune, et on la note

∫ b

a

f(t) dt :

∫ b

a

f(t) dt = lim
n→∞

sσ = lim
n→∞

Sσ

Les fonctions monotones ou continues sur [a ; b] sont toutes intégrables au sens de Riemann.
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2 Primitive d’une fonction

2.1 Définition

Soit une fonction f continue sur un intervalle I contenant a.

On montre que ∀x ∈ I, la fonction F : x 7→
∫ x

a

f(t) dt est dérivable et que sa dérivée est f .

On dit alors que F est la primitive de f qui s’annule en a.

Toutes les fonctions F définies sur I et dont la dérivée est f sont des primitives de f sur I :

F est une primitive de f ⇐⇒ dF

dx
(x) = f(x)

Comme la dérivée d’une constante est nulle, les primitives sont définies à une constante près, c’est-à-dire
que si F : x 7→ F (x) est une primitive de f , alors pour toute constante k, la fonction G : x 7→ F (x) + k est
également une primitive.
Donc si f admet une primitive sur I, elle admet en fait une infinité de primitives sur I.

On note parfois les primitives de f avec la notation

∫ x

f(t) dt .

La notation différentielle est très pratique dans la notion de primitive :∫ x

f(t) dt =

∫ x

dF = F (x) + cste

Exemple 3.2
Les primitives de la fonction f : x 7→ 2x peuvent être notées F (x) =

∫ x

2t dt = x2 + cste.

2.2 Détermination des primitives d’une fonction

Pour déterminer la primitive d’une fonction f , on doit trouver une fonction dont la dérivée est f .

Exemple 3.3
1. Les primitives de la fonction f1 : x 7→ 2x+

1

x2
sont les fonctions F1 définies par :

F1 : x 7→ x2 − 1

x
+ k ; k = cste ∈ R

2. On cherche la primitive de la fonction f2 : x 7→ 4x2 qui s’annule en 1.
Les primitives de f2 sont toutes les fonctions F2 définies par :

F2 : x 7→ 4

3
x3 + k ; k = cste ∈ R

Il n’y en a qu’une seule qui s’annule en 1. Pour que F2 s’annule en 1 il faut

F2(1) = 0 =⇒ 4

3
+ k = 0 =⇒ k =

4

3

Donc la primitive de f2 qui s’annule en 1 est la fonction :

F2 : x 7→ 4

3

(
x3 − 1

)

CHAPITRE 3. INTÉGRATION 73



2.2.1 Primitives des fonctions usuelles

f(x)

∫ x

f(t)dt Intervalle

(x− a)n ; a ∈ R ; n ∈ R \ {−1}
1

n+ 1
(x− a)n+1 + cste

R si n ≥ 0

R∗ si n ≤ −1

1

x− a
; a ∈ R ln(|x− a|) + cste R \ {a}

cos(a x) ; a ∈ R∗
1

a
sin(a x) + cste R

sin(a x) ; a ∈ R∗ −
1

a
cos(a x) + cste R

tan(a x) ; a ∈ R∗ −
1

a
ln | cos(a x)|+ cste R \

{
π

2
+ kπ, k ∈ Z

}
cotan(a x) =

1

tan(a x)
; a ∈ R∗

1

a
ln | sin(a x)|+ cste R \ {kπ, k ∈ Z}

1 + tan2(a x) =
1

cos2(a x)
; a ∈ R∗

1

a
tan(a x) + cste R \

{
π

2
+ kπ, k ∈ Z

}
1

sin2(a x)
; a ∈ R∗ −

1

a
cotan(a x) + cste R \ {kπ, k ∈ Z}

ea x ; a ∈ R∗
1

a
ea x + cste R

ln(a x) ; a ∈ R∗ x(ln(a x)− 1) = cste R∗+
1

x2 + a2
; a ∈ R∗

1

a
arctan

(
x

a

)
+ cste R

1

x2 − a2
; a ∈ R∗

1

2a
ln

∣∣∣∣x− ax+ a

∣∣∣∣+ cste = argth(x) + cste R \
√
a

cosh(a x) ; a ∈ R∗
1

a
sinh(a x) + cste R

sinh(a x) ; a ∈ R∗
1

a
cosh(a x) + cste R

tanh(a x) ; a ∈ R∗
1

a
ln (cosh(a x)) + cste R

1

cosh(x)
2cotan (ex) + cste R

1

sinh(x)
ln

∣∣∣∣tanh
x

2

∣∣∣∣+ cste R∗

cotanh(x) =
1

tanh(x)
ln |sinh x|+ cste R

1− tanh2(x) =
1

cosh2(x)
tanh(x) + cste R

1

sinh2(x)
−cotanh(x) + cste R∗

1
√
a2 + x2

; a ∈ R argsinh

(
x

|a|

)
+ cste = ln(x+

√
x2 + a2) = cste R

1
√
a2 − x2

; a ∈ R arcsin

(
x

|a|

)
+ cste ]− a ; a[

1
√
x2 − a2

; a ∈ R


argcosh

(
x

|a|

)
+ cste = ln(x+

√
x2 − a2) + cste si x > |a|

−argsinh

(
x

|a|

)
+ cste = ln |x+

√
x2 − a2|+ cste si x < −|a|

]−∞ ; −|a|[∪]|a| ; +∞[

ax+ b

(x2 + px+ q)n
; a, b, p, q ∈ R

p2 − 4q < 0

a

2
ln |X2 + pX + q|+

b−
ap

2√
q −

(
p

2

)2
arctan


X +

p

2√
q −

(
p

2

)2

+ cste R
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2.2.2 Opérations sur les primitives

Soient deux fonctions u et v et leurs dérivées u′ et v′ :

f(x)

∫ x

f(t)dt Remarques / exemple

u′(x) + v′(x) u(x) + v(x)

u′(x)× [u(x)]n ; n ∈ R \ {−1}
1

n+ 1
[u(x)]n+1 + cste

f(x)

∫ x

f(t)dt

2x(x2 + 5)2 1

3
(x2 + 5)3

cos x

sin2 x
= cos x sin−2 x − sin−1 x = −

1

sin x
u′(x)

[u(x)]n
; n ∈ R+ \ {1} −

1

n− 1

1

[u(x)]n−1
+ cste C’est un cas particulier de la primitive précédente

pour n < 0

u′(x)

u(x)
ln |u(x)|+ cste

f(x)

∫ x

f(t)dt

sin x

cos x
− ln | cos x|

dfrac2x− 1x2 + x ln |x2 + x|

u′(x)× (v′ ◦u)(x) = u′(x)×v′(u(x)) v ◦ u(x) = v(u(x))

f(x)

∫ x

f(t)dt

2xex
2

ex
2

−
1

x2
cos

(
1

x

)
sin

(
1

x

)
v′(a x) ; a ∈ R∗

1

a
× v(a x) Cas particulier du cas précédent avec u(x) = a x

Attention, la primitive d’un produit de fonction n’est pas le produit des primitives de chaque fonction !

3 Calcul d’une intégrale à partir des primitives

Soit une fonction f continue sur un intervalle I contenant a et b.
Soit F une des ses primitives.
Alors l’intégrale de f entre a et b se calcule grâce à la relation :∫ b

a

f(t) dt = [F (x)]ba = F (b)− F (a)

Remarque 3.3
Comme on finit par faire une différence, le choix de la primitive (c’est-à-dire le choix du terme constant)
n’a pas d’importance.

Si la fonction f ne possède pas de primitives simples à calculer ou pas de primitive du tout, il faudra utiliser
des méthodes de résolution numérique. Différents algorithmes existent, dont plusieurs utilisent la définition
de l’intégrale et son interprétation comme la “somme des rectangles de la fonction en escalier”.

Exemple 3.4
• I1 =

∫ 1

0

x2 dx =

[
1

3
x3

]1

0

=
1

3
× 13 − 1

3
× 03 =

1

3

• I2 =

∫ 2

1

1

x2
dx =

[
− 1

x

]2

1

= −1

2
− (−1) =

1

2

• I3 =

∫ e

1

1

x
dx = [ln |x|]e1 = ln e− ln 1 = 1
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4 Propriétés des intégrales

Soient deux fonctions f et g définies et continues sur l’intervalle [a, b].

1 Linéarité :

∀λ, µ ∈ R
∫ b

a

(λf(x) + µg(x)) dx = λ

∫ b

a

f(x) dx+ µ

∫ b

a

g(x) dx

2 Relation de Chasles :

∀c ∈ [a, b]

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

3 Inversion des bornes : ∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

4 Relation d’ordre :

f(x) < g(x) ∀x ∈ [a, b] ⇒
∫ b

a

f(x) dx <

∫ b

a

g(x) dx

m < f(x) < M ∀x ∈ [a, b] ⇒ m <
1

b− a

∫ b

a

f(x) dx < M

5 Signe de l’intégrale des fonctions positive (resp. négatives) :

f(x) > 0 ∀x ∈ [a, b] ⇒
∫ b

a

f(x) dx > 0

f(x) < 0 ∀x ∈ [a, b] ⇒
∫ b

a

f(x) dx < 0

f(x) = 0 ∀x ∈ [a, b] ⇒
∫ b

a

f(x) dx = 0

6 Majoration de l’intégrale : ∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx

7 Valeur moyenne : La valeur moyenne de la fonction f sur l’intervalle [a, b] est le nombre :

f̄ =
1

b− a

∫ b

a

f(x) dx

8 Commutation de l’intégrale :

• Intégration et puissance ne commutent jamais ;

• Intégration et valeur absolue ne commutent pas toujours ;

• A priori intégration et dérivation ne commutent pas.
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5 Intégration par parties

5.1 Relation de l’IPP

Soient deux fonctions u et v définies, continues et dérivables sur l’intervalle [a, b].∫ b

a

(uv)′(x) dx =

∫ b

a

(u′(x)v(x) + u(x)v′(x)) dx

⇔
∫ b

a

(uv)′(x) dx =

∫ b

a

u′(x)v(x) dx+

∫ b

a

u(x)v′(x) dx

⇔ [u(x)v(x)]
b
a =

∫ b

a

u′(x)v(x) dx+

∫ b

a

u(x)v′(x) dx

⇔
∫ b

a

u(x)v′(x) dx = [u(x)v(x)]
b
a −

∫ b

a

u′(x)v(x) dx︸ ︷︷ ︸
I

︸ ︷︷ ︸
J

Donc si l’on reconnait sous l’intégrale le produit d’une fonction et de la dérivée d’une autre fonction, on
peut utiliser cette dernière relation pour arriver à une intégrale plus simple à calculer.

5.2 Méthode

Soit à calculer une intégrale dans laquelle on reconnait le produit d’une fonction u(x) et de la dérivée d’une
autre fonction v′(x) :

I =

∫ b

a

u(x)× v′(x) dx

On place sur une même ligne les fonctions u(x) et v′(x), puis on déterminer la dérivée u′(x) et la primitive
v(x) :

Sous I︷ ︸︸ ︷
u(x) = ... v′(x) = ...
↓ ↓

u′(x) = ... v(x) = ...︸ ︷︷ ︸
Sous J

On applique ensuite la relation précédente :∫ b

a

u(x)v′(x) dx = [u(x)v(x)]
b
a −

∫ b

a

u′(x)v(x) dx︸ ︷︷ ︸
I

︸ ︷︷ ︸
J

Exemple 3.5
On veut calculer I =

∫ π

0

x sin(x) dx.

On reconnâıt sous l’intégrale le produit de x par sinx. On pose :

u(x) = x v′(x) = sinx
↓ ↓

u′(x) = 1 v(x) = − cosx

Donc I = [−x cosx]
π
0 −

∫ π

0

− cos(x) dx = [−x cosx]
π
0 − [− sinx]

π
0 = π

5.3 Choix des fonctions

La principale difficulté de l’intégration par partie est qu’il faut choisir dans le produit de fonction sous
l’intégrale quelle sera la fonction u et quelle sera la fonction v′.

Ce choix requiert un peu d’intuition. Il faut en fait que la nouvelle intégrale qui apparait J =

∫
u′(x)v(x) dx

soit plus simple à calculer que l’intégrale initiale I =

∫
u(x)v′(x) dx.
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Exemple 3.6
Pour l’intégrale de l’exemple précédent, si l’on fait l’autre choix, cela donne :

u(x) = sinx v′(x) = x

u′(x) = cosx v(x) =
x2

2

Alors I =

[
x2

2
sinx

]π
0

−
∫ π

0

x2

2
cosx dx.

On ne sait toujours pas calculer cette deuxième intégrale, et elle est même plus complexe que la première.
Ce n’est donc pas le bon choix.

Il existe un moyen mnémotechnique pour se souvenir de l’ordre préférentielle pour la fonction à dériver
(c’est-à-dire la fonction u dans la relation générale) : la méthode “ALPES” :

A L P E S
arccos ln Polynômes exp sin
arcsin log cos
arctan loga tan

Argcoch cosh
Argsinh sinh
Argtanh tanh

On choisit en priorité pour la fonction à dériver u celle qui est la plus à gauche dans ce tableau.
Par exemple entre une fonction trigonométrique et un logarithme, on choisira le logarithme.

Exemple 3.7
Soit à calculer I =

∫ 2

1

tet dt.

On a le choix entre un polynôme (t) et une exponentielle (et).
On choisit donc u(t) = t et v′(t) = et :{

u(t) = t
v′(t) = et

=⇒
{
u′(t) = 1
v(t) = et

Donc I = [tet]
2
1 −

∫ 2

1

et dt =
[
tet
]2
1
−
[
et
]2
1

= e2
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6 Intégrales généralisées

6.1 Introduction

Nous nous sommes jusqu’ici limités aux calculs d’intégrales du type

∫ b

a

f(t) dt dans le cas où la fonction f

est continue sur [a, b].
Ces intégrales sont appelées intégrales définies.

Les intégrales qui ne respectent pas cette condition sont appelées intégrales généralisées.

Il nous faut considérer les trois cas suivants :

• La fonction à intégrer n’est pas définie sur l’une des bornes d’intégration :∫ b

a

f(x) dx avec a /∈ D ou b /∈ D

Exemple 3.8∫ 2

0

lnx dx : la fonction ln n’est pas définie en 0.

• La fonction à intégrer n’est pas définie en un ou plusieurs points ci de l’intervalle d’intégration :∫ b

a

f(x) dx avec ∃c ∈ [a ; b] et c /∈ D

Exemple 3.9∫
−

22 1

x
dx : la fonction x 7→ 1

x
n’est pas définie en 0.

• On intègre jusqu’à une borne infinie :∫ ∞
a

f(x) dx ou

∫ b

−∞
f(x) dx

6.2 Convergence et divergence d’une intégrale

• Soit une fonction f définie et continue sur [a, b[ avec éventuellement b = +∞.

On dit que l’intégrale

∫ b

a

f(x) dx converge si

∣∣∣∣ limx→b
∫ x

a

f(t) dt

∣∣∣∣ < +∞.

Dans le cas contraire, on dit que l’intégrale diverge.

• Soit une fonction f définie et continue sur ]a, b] avec éventuellement a = −∞.

On dit que l’intégrale

∫ b

a

f(x) dx converge si

∣∣∣∣∣ limx→a
∫ b

x

f(t) dt

∣∣∣∣∣ < +∞.

Dans le cas contraire, on dit que l’intégrale diverge.

• Soit une fonction f définie et continue sur ]a, b[ avec éventuellement a = −∞ ou b =∞.
La définition de la convergence découle des deux conditions suivantes :

On dit que l’intégrale

∫ b

a

f(x) dx converge si ∀c ∈]a, b[ les deux intégrales

∫ c

a

f(x) dx et

∫ b

c

f(x) dx

convergent.

Dans le cas contraire, on dit que l’intégrale diverge.
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6.3 Définition de l’intégrale généralisée

On considère une intégrale non définie. On peut généraliser la notion d’intégrale sur tout intervalle, à
condition que l’intégrale converge, et alors l’intégrale est égale à la limite considérée :

• Soit une fonction f définie et continue sur [a, b[ avec éventuellement b = +∞.

Si

∫ b

a

f(x) dx converge, alors on peut généraliser la notion d’intégrale, et on a :

∫ b

a

f(x) dx = lim
γ→b

∫ γ

a

f(t) dt

• Soit une fonction f définie et continue sur ]a, b] avec éventuellement a = −∞.

Si

∫ b

a

f(x) dx converge, alors on peut généraliser la notion d’intégrale, et on a :

∫ b

a

f(x) dx = lim
γ→a

∫ b

γ

f(t) dt

• Soit une fonction f définie et continue sur ]a, b[ avec éventuellement a = −∞ ou b =∞.

Si

∫ b

a

f(x) dx converge, alors on peut généraliser la notion d’intégrale, et on a :

∫ b

a

f(x) dx = lim
γ→a

lim
δ→b

∫ δ

γ

f(t) dt

Exemple 3.10
• I1 =

∫ +∞

1

1

x2
dx = lim

a→+∞

∫ a

1

1

x2
dx = lim

a→+∞

[
− 1

x

]a
1

= lim
a→+∞

(
−1

a
+ 1

)
= 1

• I2 =

∫ 0

−∞
exdx = lim

a→−∞

∫ 0

a

exdx = lim
a→−∞

[ex]
0
a = lim

a→−∞
(1− ea) = 1

L’intégration par partie que l’on a vue pour les intégrales définies peut également être utilisée, mais il faut
prendre des précautions pour que tous les nouveaux termes introduits soient définis.
Soit par exemple une fonction définie sur [a, b[. L’intégration par partie nous dit que :∫ b

a

f ′(x)g(x) dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x) dx

On a donc :∫ b

a

f ′(x)g(x) dx = lim
x→b

(
[f(t)g(t)]xa −

∫ x

a

f(t)g′(t) dt

)
= lim
x→b

[f(t)g(t)]xa − lim
x→b

∫ x

a

f(t)g′(t) dt

à condition bien sûr que ces deux limites existent !
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7 Exercices du chapitre 3

Exercice 3.1
Déterminer les primitives des fonctions suivantes :

1. f1 : x 7→ x4 + 3x− 1

2. f2 : x 7→ x3 − 5x2 + 1

x

3. f3 : x 7→ 2

x− 1

4. f4 : x 7→ e−3x

5. f5 : x 7→ sin(2x− 1)

6. f6 : x 7→ 2x+ 1

x2 + x

7. f7 : x 7→ x

x2 + 7
8. f8 : x 7→ x cosh(x2)

9. f9 : x 7→ 2 sinh(x) cosh(x)

10. f10 : x 7→ tanh(3x)

11. f11 : x 7→ xe5x2+1

12. f12 : x 7→ 1

x2 + 4

13. f13 : x 7→ 2

3x2 + 5

Exercice 3.2
1. Tracer sur un même graphique les courbes des fonctions f1 = x 7→ x2, f2 = x 7→ 1

x
et les droites

d’équations x =
1

2
et x = 2.

2. Calculer l’aire de la surface délimitée par ces quatre courbes et l’axe des abscisses.

Exercice 3.3
Calculer les intégrales suivantes :

1. I1 =

∫ 3

0

(x2 + 3x− 1)dx

2. I2 =

∫ 4

1

2t3 + t2 − 5t+ 1

t
dt

3. I3 =

∫ 4

2

2t− 1

t2 − t
dt

4. I4 =

∫ π

0

(cos(2t) + sin t) dt

5. I5 =

∫ π

π
2

(sin(4x)− 5 cosx) dx

6. I6 =

∫ π
2

−π2
sinx cos3 xdx

7. I7 =

∫ 2

0

e3t+1 dt

8. I8 =

∫ 4

−4

1

x2 + 16
dx

9. I9 =

∫ π

0

(1 + 2 sinx)2 dx

10. I10 =

∫ 4

1

1−
√
t√

t
dt

11. I11 =

∫ 2

−1

|t|dt

12. I12 =

∫ ln 2

0

1

1 + ex
dx

13. I13 =

∫ 1

0

x2e5x3

dx

Exercice 3.4
1. (a) Exprimer sin(x) cos(3x) en fonction de sin(4x) et sin(2x).

(b) Calculer

∫ π
2

0

sin(x) cos(3x)dx.

2. Calculer

∫ π
2

0

cos(2x) cos(4x)dx.

Exercice 3.5
On pose A =

∫ π
6

0

sin t

cos t− sin t
dt et B =

∫ π
6

0

cos t

cos t− sin t
dt.

1. Calculer A+B et A−B.

2. En déduire A et B.

Exercice 3.6
Calculer les intégrales suivantes en utilisant une intégration par partie :

1. I1 =

∫ 1

0

(2t− 4)etdt

2. I2 =

∫ π

0

2t sin tdt

3. I3 =

∫ e

1

ln t

t2
dt

4. I4 =

∫ 2

1

lnx√
x

dx
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5. I5 =

∫ π

0

e−2x cosxdx

6. I6 =

∫ π

0

ex cosxdx

7. I7 =

∫ e

1

ln3 x√
x

dx

Exercice 3.7
Déterminer les primitives des fonctions suivantes :

1. f1 : x→ tanx

cosx
2. f2 : x→ arcsinx

3. f3 : x→ arctanx

x2 + 1

4. f4 : x→ 1

x+ x ln2 x

5. f5 : x→ sin2 x cos3 x

Exercice 3.8
Calculer les intégrales suivantes à l’aide d’un changement de variable :

1. I1 =

∫ 4

1

1−
√
x√

x
dx avec le changement de variable u =

√
x.

2. I2 =

∫ 2

1

ex

1 + ex
dx, en trouvant vous même le changement de variable !

3. I3 =

∫ 1

0

√
−x2 + 1dx avec le changement de variable x = sinu.

4. I4 =

∫ e

1

lnn x

x
dx pour tout entier n, avec le changement de variable u = lnx.

Exercice 3.9
Pour chacune des intégrales suivantes, donner le domaine de définition de la fonction sous l’intégrale, et la
calculer si possible.

1. I1 =

∫ +∞

0

exdx

2. I2 =

∫ +∞

0

e−xdx

3. I3 =

∫ +∞

0

1

x2 + 1
dx

4. I4 =

∫ 1

0

1√
x

dx

5. I5 =

∫ 1

0

1

x
dx

6. I6 =

∫ +∞

−∞

1

x2 + 1
dx

7. I7 =

∫ 1

0

lnx dx

8. I8 =

∫ π
4

0

cosx√
sinx

dx

Exercice 3.10
Soit à calculer l’intégrale double suivante, où x et y sont deux variables indépendantes :

I =

∫ 1

x=0

∫ 2

y=1

xy2dxdy

Comme ces deux variables sont indépendantes, on commence par calculer l’intégrale selon y en considérant
x constant :

I =

∫ 1

x=0

(∫ 2

y=1

xy2dy

)
dx

=

∫ 1

x=0

([
xy3

3

]2

y=1

)
dx

=

∫ 1

x=0

(
8x− x

3

)
dx

=

∫ 1

x=0

(
7x

3

)
dx

Puis on intègre le résultat selon x :

I =

∫ 1

x=0

(
7x

3

)
dx

=

[
7x2

6

]1

x=0

=
7

6

En prenant exemple sur le cas précédent, calculer :
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1. J =

∫ π

x=0

∫ π
2

y=0

cosx sin y dydx

2. K =

∫ e

x=1

∫ 3

y=0

y lnx dxdy

Exercice 3.11
(Cet exercice est inspiré d’un problème d’OSF (Semestre 2).

On considère un filtre conique d’angle θ.
On note R la résistance du support de filtration, ρ la masse volumique de l’eau et µ sa viscosité cinématique.

Les valeurs numériques sont les suivantes :

• R = 1, 10.1010m−1

• ρ = 1, 00.103 kg.m−3

• µ = 1, 00.10−3Pa.s

• θ = 80 ◦

Le volume est donné par :

V (t) =

πh3(t) sin2

(
θ

2

)
3

(1)

Le débit volumique est donné par :

dV

dt
= −πρg

µR
sin

(
θ

2

)
h3(t) (2)

1. Différencier la relation (1) afin d’exprimer dV en fonction de dh.

2. En utilisant les relations précédentes, exprimer dt en fonction de dh.

3. La hauteur initiale d’eau étant de 0, 8 m, calculer le temps nécessaire pour que la hauteur d’eau
atteigne 0,4 m.

Exercice 3.12
(Cet exercice est inspiré d’un TD de Dimensionnement et Opérations Unitaires de 2ème année).

Soit à calculer le NUT (Nombre d’Unités de Transfert) suivant :∫ sortie

entrée

dC

−0, 1C + 2, 68− C

où C est la concentration, qui est de 0, 8 mol/m3 en entrée et de 2, 36 mol/m3 en sortie.

Calculer ce NUT.

Exercice 3.13
(Cet exercice est inspiré d’un TD de Réacteur de 2ème année).

On cherche à calculer la constante de vitesse à 25◦C de la réaction d’hydrolyse alcaline de l’acétate d’éthyle
(CH3COOC2H5) par la soude en phase aqueuse :

CH3COOC2H5 + NaOH = CH3COONa + C2H5OH

On note ca la concentration en acétate d’éthyle et cs la concentration de soude. Ces deux concentrations
diminuent donc au cours du temps.
On se place dans les condition suivantes :

• Concentration initiale en soude : cs0 = 68, 2 mol/m3

• Concentration initiale en acétate d’éthyle : ca0 = 52, 6 mol/m3

Au bout de trente minutes on mesure une concentration en soude cs30 = 49, 7 mol/m3.
On sait que la réaction est d’ordre 1, ce qui donne après un petit bilan stoechiométrique :

dcs
dt

= −kcacs = −k(ca0 − cs0 + cs).cs

On cherche à déterminer la valeur de la constante k.
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1. Montrer que l’on a dcs

(
1

cs
− 1

ca0 − cs0 + cs

)
= −k(ca0 − cs0)dt.

2. Intégrer l’égalité précédente afin de déterminer k (qui a bien sûr une unité !).

Exercice corrigé 3.1
Calculer les intégrales suivantes :

1. I1 =

∫ π

0

cos2 tdt

2. I2 =

∫ π

0

(sin2 t+ cos t)dt

1. Soit à calculer I1 =

∫ π

0

cos
2
tdt :

I1 =

∫ π

0

cos
2
tdt

=⇒ I1 =

∫ π

0

1 + cos(2t)

2
dt

=⇒ I1 =

[
t

2
+

sin(2t)

4

]π
0

=⇒ I1 =
π

2

2. Soit à calculer I2 =

∫ π

0

(sin
2
t+ cos t)dt :

I2 =

∫ π

0

(sin
2
t+ cos t)dt

=⇒ I2 =

∫ π

0

(
1− cos(2t)

2
+ cos t

)
dt

=⇒ I2 =

[
t

2
−

sin(2t)

4
+ sin t

]π
0

=⇒ I2 =
π

2

Exercice corrigé 3.2
1. Montrer que pour les fonctions f impaires définies sur un intervalle I, quel que soit a ∈ I, on a∫ a

−a
f(x)dx = 0.

2. Montrer que pour les fonctions f paires définies sur un intervalle I, quel que soit a ∈ I, on a∫ 0

−a
f(x)dx =

∫ a

0

f(x)dx.

1. On décompose l’intégrale : ∫ a

−a
f(x)dx =

∫ 0

−a
f(x)dx +

∫ a

0

f(x)dx︸ ︷︷ ︸
I

︸ ︷︷ ︸
J

Or si f est une fonction impaire, alors ∀x ∈ I, f(−x) = −f(x).
Donc si on fait le changement de variable u = −x dans la deuxième intégrale, on a :

J =

∫ 0

−a
f(x)dx =

∫ 0

a

f(−u)d(−u) =

∫ 0

a

(−f(u))(−d(u)) =

∫ 0

a

f(u)du = −
∫ a

0

f(u)du = −I

On a donc

∫ a

−a
f(x)dx = I − I =⇒

∫ a

−a
f(x)dx = 0 .

2. On part de l’intégrale

∫ 0

−a
f(x)dx.

Si f est une fonction paire, alors ∀x ∈ I, f(−x) = f(x).
Donc si on fait le changement de variable u = −x, on a :

∫ 0

−a
f(x)dx =

∫ 0

a

f(−u)d(−u) =

∫ 0

a

(−f(u)du) =⇒
∫ 0

−a
f(x)dx =

∫ a

0

f(x)dx

Exercice corrigé 3.3
L’étude cinétique des réactions chimiques consiste à observer l’évolution de l’avancement de la réaction au
cours du temps et de déterminer les vitesses de réaction.
Soit par exemple une réaction dont l’équation s’écrit :

aA+ bB → cC
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On s’intéresse plus particulièrement au réactif A affecté du nombre stoechiométrique a.
On note ξ(t) l’avancement de la réaction à un instant t, si bien que la quantité de matière du réactif A,
notée nA(t), est donnée par :

nA(t) = n0 − aξ(t)

où n0 est la quantité de matière initialement introduite.

La vitesse de la réaction est définie par :

v(t) =
dξ

dt

Si tous les autres réactifs sont introduits en excès, on montre que l’on peut dans de nombreux cas mettre
cette vitesse sous la forme :

v(t) = k (nA(t))
α

et alors on dit que la réaction est d’ordre α par rapport au réactif A.

1. Exprimer la vitesse de réaction en fonction de
dnA
dt

.

2. En déduire que
dnA

(nA)
α = −kadt.

3. Exprimer

∫ t

0

dnA
(nA)

α en fonction de nA(t), n0 et α pour les trois cas α = 0, α = 1 et α = 2.

4. En déduire nA(t) en fonction du temps et de n0 pour chacun de ces trois cas.

1. v(t) =
dξ

dt
=

d

dt

(
n0 − nA(t)

a

)
=⇒ v(t) = −

1

a

dnA

dt
.

2. v(t) = k (nA(t))α = −
1

a

dnA

dt
=⇒

dnA

(nA)α
= −kadt .

3. • α = 0 :∫ t

0

dnA

1
=

∫ t

0

dnA = [nA]
t
0 = nA(t)− nA(0) =⇒

∫ t

0

dnA

(nA)0
= nA(t)− n0 .

• α = 1 :∫ t

0

dnA

nA
= [ln(nA)]

t
0 =⇒

∫ t

0

dnA

(nA)1
= ln

(
nA(t)

n0

)
.

• α = 2 :∫ t

0

dnA

(nA)2
=

[
−

1

nA

]t
0

=⇒
∫ t

0

dnA

(nA)2
=

1

n0

−
1

nA(t)
.

4.
dnA

(nA)α
= −kadt =⇒

∫ t

0

dnA

(nA)α
=
[
−kat′

]t
0

= −kat.

• α = 0 : nA(t)− n0 = −kat =⇒ nA(t) = n0 − kat

• α = 1 : ln

(
nA(t)

n0

)
= −kat =⇒ nA(t) = n0e

−kat

• α = 2 :
1

n0

−
1

nA(t)
= −kat =⇒ nA(t) =

n0

1 + n0kat

Exercice corrigé 3.4
Soit I =

∫ 1

0

dx√
x2 + 2

1. Calculer la dérivée de la fonction f : x 7→
√
x2 + 2.

2. En déduire la dérivée de la fonction g définie sur [0 ; 1] par g(x) = ln(x+
√
x2 + 2).

3. Calculer I.

1. f ′(x) = 2x×
1

2
√
x2 + 2

=⇒ f
′
(x) =

x
√
x2 + 2

2. g′(x) =

1 + x√
x2+2

x+
√
x2 + 2

=

√
x2 + 2 + x

(x+
√
x2 + 2)

√
x2 + 2

=⇒ g
′
(x) =

1
√
x2 + 2

3. I =

∫ 1

0

dx
√
x2 + 2

=

∫ t

0

g
′
(x) dx = [g(x)]

1
0 = g(1)− g(0) = ln(1 +

√
3)− ln(

√
2) =⇒ I = ln

(
1 +
√

3
√

2

)
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4Équations différentielles

Chapitre 4

1 Définition

Rappel :
Une équation est une égalité faisant intervenir une inconnue.
Résoudre l’équation, c’est déterminer la(les) valeur(s) de cette inconnue.

Exemple 4.1
• x+ 2 = 3 : équation du premier degré d’inconnue x

• t2 + t− 2 = 0 : équation du second degré d’inconnue t

•
{
x+ y = 0
2x− y = 3

: système d’équations d’inconnues x et y

On appelle équation différentielle une équation liant une fonction f(x) à ses dérivées f ′(x), f ′′(x),
f (3)(x),..., et éventuellement à d’autres fonctions.
Résoudre l’équation différentielle, c’est déterminer la fonction f .

Exemple 4.2
• (1) : f ′′(x)− 2f(x) = 0

• (2) : 2f ′(x)− 2xf(x) = cos(x)

• (3) : f ′(x)− 3f(x) = 2

• (4) : f ′(x)− f(x) = x

• (5) : f ′′(x)− 3f ′(x) + 3xf(x) = 2x2

• (6) : −f ′(x) + f ′′ + 5f(x) = −4

L’ordre de l’équation différentielle est l’ordre de la dérivée la plus élevée.

Le terme ne faisant pas intervenir f ou l’une de ses dérivées, et que l’on place souvent à droite de l’égalité,
est appelé second membre de l’équation.

Le coefficient du terme d’ordre 2 est le coefficient devant f ′′(x), le coefficient du terme d’ordre 1 est le
coefficient devant f ′(x) et le coefficient d’ordre 0 est le coefficient devant f(x).
Ces coefficients ne sont pas nécessairement des constantes, il peuvent dépendre de la variable x.

Dans le cas d’une équation différentielles d’ordre n, il y aura n constantes d’intégration. L’équation telle
quelle a une infinité de solutions, et pour pouvoir donner une unique solution il faut disposer de n conditions
aux limites qui permettront de déterminer ces constantes.
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2 Équations différentielles du premier ordre

2.1 Équations différentielles du premier ordre sans second membre

2.1.1 Méthode générale

La forme générale d’une équation de ce type est :

f ′(x)− a(x)× (f(x))
n

= 0 où a est une fonction de x et n ∈ Z

On peut la réécrire :

f ′(x) = a(x)× (f(x))
n

Pour la résoudre, on procède de la manière suivant :

• On exprime
f ′(x)

fn(x)
:

f ′(x)

fn(x)
= a(x) ;

• On intègre à gauche et à droite de l’égalité :∫ x f ′(x)

fn(x)
dx = A(x) + k ; k = cste

Où l’on a noté A(x) une primitive de a(x).

Les solutions n’ont pas la même forme suivant que n = 1 ou n 6= 1. Les deux cas sont détaillés ci-dessous.

2.1.2 1er cas : n = 1

Exemple introductif :
Résoudre l’équation différentielle f ′(x)− 2xf(x) = 0 avec la condition aux limites f(1) = 1.

Forme générale des solutions :

f ′(x) = a(x)f(x) =⇒ f ′(x)

f(x)
= a(x) pour tout x tel que f(x) 6= 0

On primitive à gauche et à droite de l’égalité :

ln |f(x)| = A(x) + k ; k = cste (on rappelle que A est une primitive de a)
⇔ |f(x)| = eA(x)+k = ek × eA(x)

⇔ f(x) = ±ek × eA(x)

On pose K = ±ek = cste.

Finalement :

f(x) = KeA(x) ; K = cste

La constante K se détermine grâce à la condition aux limites.

Exemple 4.3
Résoudre :

• f ′(x)− xf(x) = 0 avec f(0) = 3

• 1

2
f ′(x) +

1

x
f(x) = 0 avec f(1) = 1

• f ′(x)− cos(3x)f(x) = 0 avec la condition aux limites f(0) = 10
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2.1.3 2ème cas : n 6= 1

Exemple introductif :

Résoudre l’équation différentielle f ′(x)− 2

x
(f(x))

2
= 0 avec la condition aux limites f(1) = 1.

Méthode générale de résolution :

f ′(x)− a(x) (f(x))
n

= 0 =⇒ f ′(x)

fn(x)
= a(x) =⇒ f ′(x)× f−n(x) = a(x) pour tout x tel que f(x) 6= 0

On primitive à gauche et à droite de l’égalité :

1

−n+ 1
f−n+1(x) = A(x) + k ; k = cste (on rappelle que A est une primitive de a)

⇔ f1−n(x) = (1− n) (A(x) + k) ; k = cste

⇔ f(x) = [(1− n) (A(x) + k)]
1

1−n ; k = cste

La constante k se détermine grâce à la condition aux limites.

Exemple 4.4
Résoudre :

• f ′(x) + xf3(x) = 0 avec f(2) =
1

2

• f ′(x) =
2x3

f(x)
avec f ′(1) = 2

2.2 Équations différentielles du premier ordre avec second membre, avec n = 1

Exemple introductif

Résoudre l’équation différentielle f ′(x) + f(x) = e−x avec f(0) = 0.

Méthode générale

Ces équations ont la forme générale :

f ′(x)− a(x)f(x) = b(x) où a et b sont des fonctions de x

On utilisera la méthode de variation de la constante pour résoudre ces équations.

1ère étape : On résout l’équation différentielle sans second membre f ′(x)− a(x)f(x) = 0, en remplaçant
la constante d’intégration par une fonction de x, que l’on notera C(x) :

f(x) = C(x)eA(x)

2ème étape : On reprend l’équation complète et on la réécrit avec la solution précédente :

f ′(x)− a(x)f(x) = b(x)
=⇒ C ′(x)eA(x) + C(x)a(x))eA(x) − a(x)C(x)eA(x) = b(x)
=⇒ C ′(x)eA(x) = b(x)

On arrivera toujours avec cette méthode à éliminer C(x) et à n’avoir plus que C ′(x).

3ème étape : On isole C ′(x) :

C ′(x)eA(x) = b(x)
=⇒ C ′(x) = b(x)e−A(x)
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4ème étape : On intègre l’expression précédente de façon à exprimer C(x), à une constante d’intégration
k près.
On aura alors déterminé la forme générale de f en remplaçant C(x) dans l’expression de f(x) trouvée
à l’étape 1 :

f(x) = eA(x)

∫
b(x)e−A(x)dx

5ème étape : On utilise la condition aux limites pour déterminer la constante d’intégration k.

Exemple 4.5
• Résoudre l’équation différentielle f ′(x)− xf(x) = −x avec la condition aux limites f(0) = 5.

• Résoudre l’équation différentielle
1

3
f ′(x)+

2

3x
f(x) = cos(x3) avec la condition aux limites f

(
3

√
π

2

)
=

0.

3 Équations différentielles du second ordre à coefficients constants

3.1 Équations différentielles du second ordre à coefficients constants sans se-
cond membre

Ce sont les équations différentielles de la forme :

af ′′(x) + bf ′(x) + cf(x) = 0 a ; b ; c = cstes

3.1.1 Équation caractéristique

On définit le polynôme caractéristique de l’équation, noté K(r) :

K(r) = ar2 + br + c

La forme générale des solutions de l’équation différentielle dépend des solutions de l’équation :

K(r) = 0

Il faut donc calculer le discriminant ∆ = b2 − 4ac et distinguer les trois cas ∆ > 0, ∆ < 0 et ∆ = 0.

3.1.2 Premier cas : ∆ > 0

Alors K(r) a deux racines simples réelles :

r1 =
−b+

√
∆

2a
et r2 =

−b−
√

∆

2a

Et les solutions de l’équation différentielle sont :

f(x) = A1e
r1x +A2e

r2x ; A1, A2 = cstes

Les constantes A1 et A2 sont déterminées grâce aux conditions aux limites.

Exemple 4.6
Résoudre l’équation différentielle f ′′(x) − 5f ′(x) + 6f(x) = 0 avec les conditions aux limites f(0) = 0 et
f ′(0) = 1.
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3.1.3 Deuxième cas : ∆ < 0

Alors K(r) a deux racines complexes :

z1 =
−b+ i

√
−∆

2a
et z2 =

−b− i
√
−∆

2a

Et les solutions de l’équation différentielle peuvent s’écrire de trois manières (qui sont équivalentes) :

f(x) = e−
b

2ax

[
A cos

(√
−∆

2a
x

)
+B sin

(√
−∆

2a
x

)]
; A,B = cstes

ou f(x) = A1e
z1x +A2e

z2x = e−
b

2ax
[
A1e

i
√
−∆

2a x +A2e
− i
√
−∆

2a x
]

; A1, A2 = cstes

ou f(x) = A0e
− b

2ax cos

(√
−∆

2a
x+ φ

)
; A0 ; φ = cstes

Où les constantes sont déterminées grâce aux conditions aux limites.

On remarquera que dans les expressions précédente, − b

2a
est la partie réelle des racines et

√
−∆

2a
est la

valeur absolue de leur partie imaginaire.

Exemple 4.7
Résoudre l’équation différentielle f ′′(x) + 6f ′(x) + 13f(x) = 0 avec les conditions aux limites f(0) = 0 et

f
(
π
4

)
= 4.

3.1.4 Troisième cas : ∆ = 0

Alors K(r) a une racine double :

r0 =
−b
2a

Et les solutions de l’équation différentielle sont :

f(x) = (A1 +A2x)er0x ; A1, A2 = cstes

Les constantes A1 et A2 sont déterminées grâce aux conditions aux limites.

Exemple 4.8
Résoudre l’équation différentielle f ′′(x) + 4f ′(x) + 4f(x) = 0 avec les conditions aux limites f(0) = 1 et
f ′(0) = 0.

3.2 Équations différentielles du second ordre à coefficients constants avec se-
cond membre

Soit l’équation différentielle suivante pour la fonction f :

af ′′(x) + bf ′(x) + cf(x) = u(x) où a, b, c = cstes et u est une fonction connue

Toutes les solutions de cette équation sont de la forme :

f(x) = fs(x) + fp(x)

où fs(x) est une solution générale de l’équation différentielle sans second membre et fp(x) une solution
particulière de l’équation complète.

On trouve fs en résolvant l’EDSSM, ce que l’on sait faire (voir partie précédente).

Il nous reste à déterminer la solution particulière fp, qui dépend bien évidemment du second membre u(x).
On la trouve en la devinant ou en utilisant la méthode générale présentée ci-dessous.
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3.2.1 1er cas : u(x) = Pn(x) où Pn est un polynôme de degré n

On distingue trois cas selon les valeurs de b et c :

• Si c 6= 0, alors fp est un polynôme de degré n ;

• Si c = 0 et b 6= 0, alors fp est un polynôme de degré n+ 1 ;

• Si c = b = 0, alors fp est un polynôme de degré n+ 2.

fp étant solution de l’équation complète, les coefficients du polynôme fp sont à déterminer par identification
en remplaçant f par fp dans l’équation différentielle complète.

Exemple 4.9
Résoudre :

• f ′′(x) + f ′(x)− 2f(x) = 5− 2x avec f(0) = f ′(0) = 0

• f ′′(x) + f ′(x)− 2f(x) = 1− 2x avec f(0) = 4 et f ′(0) = 1

• f ′′(x) + 2f ′(x) = 4x+ 2 avec f(0) = 0 et f ′(0) = 0

3.2.2 2è cas : u(x) = emxPn(x) où Pn est un polynôme de degré n et m ∈ R

Alors la solution particulière est de la forme fp(x) = emxQp(x) où Q est un polynôme de degré p.
On distingue trois cas selon si m est une racine du polynôme caractéristique K et selon la multiplicité de
cette racine.

• Si K(m) 6= 0 (c’est-à-dire que m n’est pas une racine de K), alors p = n : fp = emxQn(x)

• Si m est une racine simple de K, alors p = n+ 1 : fp = emxQn+1(x)

• Si m est une racine double de K, alors p = n+ 1 : fp = emxQn+2(x)

fp étant solution de l’équation complète, les coefficients du polynôme Q sont à déterminer par identification
en remplaçant f par fp dans l’équation différentielle complète.

Exemple 4.10
Résoudre f ′′(x)− f(x) = (1 + x)e2x avec f(0) = f ′(0) = 3

3.2.3 3è cas : g est de la forme g(x) = ekxP (x) sin(αx) ou g(x) = ekxP (x) cos(αx) où P est un
polynôme de degré n

On met cos(αx) et sin(αx) sous la forme d’une exponentielle complexe, et on résout avec la même méthode
que précédemment.

Exemple 4.11
Soit à résoudre l’équation différentielle :

f ′′(x) + 2f ′(x) + 2f(x) = e−x sinx (∗)

1. Montrer que e−x sinx =
1

2i
e(−1+i)x − 1

2i
e−(1+i)x.

2. Montrer que si :

f1 est solution de l’équation f ′′1 (x) + 2f ′1(x) + 2f1(x) =
1

2i
e(−1+i)x (1)

et si f2 est solution de l’équation :

f ′′2 (x) + 2f ′2(x) + 2f2(x) = − 1

2i
e−(1+i)x (2)

alors la fonction f = f1 + f2 est solution de (∗).
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3. Vérifier que la fonction f10(x) = −x
4
e(−1+i)x est une solution particulière de (1) et donner la forme

générale de f1.

4. En déduire la forme générale de f2.

5. Résoudre finalement (∗) avec les conditions initiales f(0) = 0 et f ′(0) = 0.
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4 Exercices du chapitre 4

Exercice 4.1
Résoudre :

1. f ′(x)− 4f(x) = 0 avec f(0) = 2

2. tf ′(t)− 2f(t) = 0 avec f(1) = 3

3. f ′(t) + (f(t))2 = 0 avec f ′(0) = −1

4. f ′(t)f(t)− 2(f(t))3 = 0 avec f(1) = 1

5. y′(x)− y(x)

x
= x avec y(1) = 4 sur R+

6.
dx(t)

dt
+ x(t) = te−t avec x(0) = 1

7.
dx(t)

dt
+ x(t) = t3 avec x(0) = 5

Exercice 4.2
Résoudre les équations différentielles suivantes :

1. f ′′(t) + 3f ′(t)− 4f(t) = 0 avec f(0) = 1 et f ′(0) = 1.

2. x′′(t)− 16x′(t) + 100x(t) = 0 avec x(0) = 0 et x′(0) = 24.

3. f ′′(t) + 2f ′(t) + f(t) = 0 avec f(0) = 10 et f ′(0) = 3
4 .

4. −f ′′(t) + 9f(t) = 0 avec f(0) = 3 et f ′(0) = 3.

5. y′′(x) + y′(x) + y(x) = 0 avec y(0) = 0 et y′(0) = 1.

6. y′′(x) + 2y′(x)− y(x) = 0 ; y(0) = 0 ; y′(0) = 2

7. y′′(x)− 2y′(x) + y(x) = 0 ; y(0) = 1 ; y′(0) = 3

8. 3y′′(x) + 2y′(x)− y(x) = 0 ; y(0) = 0 ; y′(0) =

√
3

2

Exercice 4.3
Résoudre les équations différentielles suivantes, où y est une fonction de x :

1. y′′ + 4y′ − 5y = 10 avec y(0) = 4 et y′(0) = 0

2. y′′ + 4y′ + 5y = 10x− 2 avec y(0) = 1 et y′(0) = 1

3. 2y′′ − 5y′ − 3y = −3t2 − 10t+ 4 avec y(0) = 0 et y′(0) = −1

4. y′′ + y′ + y = e−x(x2 − 2x+ 3) avec y(0) = 1 et y′(0) = −1

Exercice 4.4
1. On cherche à résoudre l’équation différentielle suivante :

y′(x) = y(x)× ln(y(x)) ; y(0) = e2 (∗)

(a) Justifier que la fonction y est à valeurs positives.

(b) On pose z : x 7→ z(x) = ln(y(x)).
Calculer z′(x), établir l’équation différentielle à laquelle obéit z et la résoudre.

(c) En déduire la fonction y solution de l’équation (∗).
2. On cherche à résoudre l’équation différentielle suivante sur R+ :

2xf ′(x) + f(x) + x2f3(x) = 0

(a) On considère la nouvelle fonction g(x) =
1

f2(x)
.

Établir l’équation différentielle à laquelle satisfait g et la résoudre.

(b) Déterminer f(x).
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Exercice 4.5
On cherche la loi donnant la température d’un corps se refroidissant dans un environnement dont la tempé-
rature ambiante est inférieure à sa température initiale.
On admet que la vitesse de refroidissement d’un corps est proportionnelle à la différence de température de
ce corps avec la température ambiante.
On note θ(t) la température de cet objet à l’instant t (exprimé en secondes) et θa la température ambiante.

On observe que dans une pièce où la température ambiante est maintenue à 20◦C, un objet chauffé à 100◦C
voit sa température chuter à 60◦C en 10 minutes.

1. Montrer que θ(t) vérifie une équation différentielle de la forme :

dθ

dt
= α(θ(t)− θa) α = cste

2. Quels sont le signe et l’unité de α ?

3. Résoudre cette équation différentielle afin de déterminer θ(t).

4. Au bout de combien de temps l’objet aura-t-il atteint une température de 25◦C ?

Exercice 4.6
Un réservoir cylindrique de hauteur H = 2 m et de
rayon R = 1 m initialement plein se vide avec un
débit volumique qui est proportionnelle à la hauteur

x de liquide :
dV

dt
= αx ;α = cste ( le débit volu-

mique est en m3.s−1).

1. Quel doit être le signe de α ?

2. Écrire l’équation différentielle à laquelle obéit
x(t) et la résoudre.

3. Quelle limite voyez-vous à cette modélisation ?
(C’est-à-dire quel problème présente cette so-
lution ?)

Exercice 4.7
On souhaite déterminer l’expression de la température de l’eau T (y) (en ◦ C) dans un échangeur de chaleur
cylindrique de longueur L = 1 m.
Un bilan thermique sur un tronçon de tube permet d’aboutir à l’équation différentielle suivante :

dT (y)

dy
+ 0, 67 (T (y)− Ta) = 0

On donne les valeurs numériques suivantes :

• Température à l’entrée du tube : T (0) = 80◦C

• Température ambiante : Ta = 5◦C

1. Déterminer T (y).

2. Calculer la température à la sortie de l’échangeur.

Exercice 4.8
On considère un objet de masse m qu’on lâche sans vitesse initiale d’une hauteur h, et qui tombe verticale-
ment.
On note z(t) l’altitude (en mètres) à l’instant t (l’instant t = 0 correspondant au moment où on le lâche).
Si l’on néglige tout frottement, l’altitude z obéit à l’équation différentielle suivant :

m
d2z

dt2
= −mg

Où g = 9, 81kg.m.s−2 est l’accélération de la pesanteur.

1. Donner l’expression des deux conditions initiales.

2. Résoudre cette équation différentielle.
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3. Dans ces conditions, en combien de temps un marteau de 2 kg tombe-t-il d’une hauteur de 50 cm ?
Et une plume de 20 g ?

4. Pourquoi ce résultat est-il étonnant ? A quoi est-ce dû ?

Exercice corrigé 4.1

y′(x) + 2y(x) = x2 ; y(0) = 0

y′(x)− y(x) = ex(x+ 1) ; y(0) = −3

(x2 + 1)y′(x) + 2xy(x) + 1 = 0 ; y(1) = −1

2

y′(x)
√
x2 + 1− y(x) = 1 ; y(0) = 0

1. y(x) =
1− e−2x

4
+
x2 − x

2

2. y(x) = e
x

(
x2

2
+ x− 3

)

3. y(x) = −
x

x2 + 1

4. y(x) =
√
x2 + 1− x− 1

Exercice corrigé 4.2
Donner la solution f de chacune des équations différentielles suivantes.
Aucune justification n’est exigée.

Équation différentielle Solution

f ′(x) + 6xf(x) = 0 ; f(0) = 3

f ′(x) + 6xf(x)− 6x = 0 ; f(0) = 3

f ′′(x)− 4f ′(x)− 5f(x) = 0 ; f(0) = 0 ; f ′(0) = 6

Équation différentielle Solution

f ′(x) + 6xf(x) = 0 ; f(0) = 3 f(x) = 3e−3x2

f ′(x) + 6xf(x)− 6x = 0 ; f(0) = 3 f(x) = 2e−3x2
+ 1

f ′′(x)− 4f ′(x)− 5f(x) = 0 avec ; f(0) = 0 ; f ′(0) = 6 f(x) = e5x − e−x

Exercice corrigé 4.3
On considère un circuit RLC série en régime libre (pas de générateur).
Alors la tension u aux bornes du condensateur obéit à l’équation différentielle :

d2u

dt2
+
ω0

Q

du

dt
+ ω2

0u = 0
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Où ω0 =
1√
LC

, Q =
1

R

√
L

C
.

Le condensateur est initialement chargé à une tension E et l’intensité i = C
du

dt
est initialement nulle.

Les composants sont tels que R < 2

√
L

C
.

Déterminer u(t).

Vous pourrez poser λ =
ω0

2Q
et Ω =

ω0

√
4Q2 − 1

2Q
.

1. Équation caractéristique : r2 +
ω0

Q
r + ω2

0 = 0.

La discriminant est ∆ =

(
ω0

Q

)2

− 4ω2
0 =

(
ω0

Q

)2

(1− 4Q2).

Il faut déterminer le signe de ∆ :

R < 2

√
L

C
⇒

1

2
<

1

R

√
L

C
⇒ Q >

1

2
⇒ 4Q2 > 1⇒ 1− 4Q2 < 0⇒ ∆ < 0.

On a donc ∆ =

(
i
ω0

Q

√
4Q2 − 1

)2

et il y a deux racines :

r1 =
ω0(1 + i

√
4Q2 − 1)

2Q
et r2 =

ω0(1− i
√

4Q2 − 1)

2Q

Pour simplifier on pose λ =
ω0

2Q
et Ω =

ω0

√
4Q2 − 1

2Q
.

La solution est donc de la forme :

u(t) = e
λt

[A cos(Ωt) + B sin(Ωt)] A ; B = cstes

On en déduit :

du

dt
= e

λt
[(λA+ ΩB) cos(Ωt) + (λB − ΩA) sin(Ωt)]

2. Les conditions initiales donnent :

{
u(0) = E
du

dt
(0) = 0

=⇒
{

A = E
λA+ ΩB = 0

=⇒
{

A = E

B = −
λA

Ω
= −

λE

Ω

3. Finalement :

u(t) = Ee
ω0
2Q

t

[
cos

(
ω0

√
4Q2 − 1

2Q
t

)
−

1

2
√

4Q2 − 1
sin

(
ω0

√
4Q2 − 1

2Q
t

)]

Exercice corrigé 4.4
On étudie le mouvement d’un frisbee lancé à l’horizontal.
A l’instant t = 0 il est lancé d’un point M de coordonnées x(0) = 0 et z(0) = h.
A tout instant t on note vx(t) la vitesse horizontale et vz(t) la vitesse verticale.
La vitesse verticale initiale est nulle : vz(0) = 0.
La vitesse horizontale initiale vaut vx(0) = v0.

Ce frisbee a une masse m = 0, 175 kg.
Il est lancé dans l’air et le coefficient de frottement fluide est alors α = 0, 02.10−3 kg.s−1.
On prendra l’accélération de la pesanteur égale à g = 10 m.s−2.
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Alors la vitesse horizontale vx(t) en fonction du temps est régie par l’équation différentielle suivante :

v′x(t) +
α

m
vx(t) = 0 (1)

Et la vitesse verticale vz(t) en fonction du temps est régie par l’équation différentielle suivante :

v′z(t) +
α

m
vz(t) = g (2)

Dans ces équations différentielles :

1. v′x(t) est la dérivée temporelle de vx(t) ;

2. v′z(t) est la dérivée temporelle de vz(t) ;

3. α, m et g sont des constantes.

1. Résoudre l’équation différentielle (1) afin d’exprimer vx(t) en fonction des constantes v0, m et α.

2. Résoudre l’équation différentielle (2) afin d’exprimer vz(t) en fonction des constantes α, m et g.

3. En déduire les expressions de x(t) et z(t).

1. L’équation (1) est une équation différentielle du premier ordre sans second membre :

v′x(t) +
α

m
vx(t) = 0

=⇒ v′x(t) = −
α

m
vx(t)

=⇒ vx(t) = ke−
α
m
t ; k = cste

On utilise la condition initiale pour trouver k :
vx(0) = v0 =⇒ k = v0

Finalement :

vx(t) = v0e
− α
m
t

2. L’équation (2) est une équation différentielle du premier ordre avec second membre.
On commence par résoudre l’équation différentielle sans second membre, qui est la même que l’équation (1). On obtient donc

vz(t) = k(t)e−
α
m
t où k est une fonction de t.

On réinjecte cette solution dans l’équation complète :

v′z(t) +
α

m
vz(t) = g

=⇒ k′(t)e−
α
m
t = g

=⇒ k′(t) = ge
α
m
t

=⇒ k(t) =
gm

α
e
α
m
t + a ; a = cste

=⇒ vz(t) =
gm

α
+ ae−

α
m
t ; a = cste
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On utilise la condition initiale pour trouver a :

vz(0) = 0 =⇒
gm

α
+ a = 0 =⇒ a = −

gm

α

Finalement :

vz(t) =
gm

α

(
1− e−

α
m
t
)

3. (a) vx(t) = x′(t) = v0e
− α
m
t =⇒ x(t) = −

v0m

α
e−

α
m
t + k ; k = cste.

On utilise la condition initiale pour trouver k :

x(0) = 0 =⇒ −
v0m

α
+ k = 0 =⇒ k =

v0m

α

Donc finalement :

x(t) =
v0m

α

(
1− e−

α
m
t
)

(b) vz(t) = z′(t) =
gm

α

(
1− e−

α
m
t
)

=⇒ z(t) =
gm

α

(
t+

m

α
e−

α
m
t

)
+ k ; k = cste.

On utilise la condition initiale pour trouver k :

z(0) = h =⇒ g

(
m

α

)2

+ k = h =⇒ k = h− g
(
m

α

)2

Donc finalement :

z(t) = h+
gm

α
t+ g

(
m

α

)2 (
e
− α
m
t − 1

)
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