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1. AJOUTER NOMBRES COMPLEXES

Objectifs des chapitres

Chapitre 1 : Généralités sur les fonctions numeériques

— Ensemble de nombres, intervalle, inclusion, exclusion, réunion, intersection.

— Fonction, image/antécédent, domaine de définition, (dé)croissante/monotone, strictement (dé)croissante,

strictement monotone, paire/impaire, composition de fonctions.
— Limites, limites comparées exp/polynémes/In, factorisation par le terme dominant, régle de 'Hospital.
— Dérivation (uv)’; (u/v)’; (fo g)’ = exp(u)’; In(u)’; (u™)’.
— Etude d’une fonction.
— Etre capable de tracer 1 cos x, sin x, 22, 2%, €, In(z), V7, 22+ 1, (z — 1)* + 3.

Chapitre 2 : Fonctions usuelles
— Domaines de définition, dérivée et graphique de €%, In(z), tan(z), arctan(z), sinh(z), cosh(z), tanh(z).

— Opérations sur les e”, In(z).

Chapitre 3 : Intégration

— Calculer une primitive, une intégrale.
— Utiliser la formule de 'IPP (et la correspondance ALPES).

Chapitre 4 : Equations différentielles

— Résoudre une ED du 1" ordre avec ou sans second membre.

— Résoudre une ED du 2™ ordre avec ou sans second membre.

Remarque générale

Maitriser un mot/une notion signifie :
1. étre capable de faire une phrase en francais pour le/la définir
2. connaitre sa correspondance en “langage mathématique”

3. étre capable de donner un exemple avec une représentation graphique

Exemple : La fonction f est paire. Il faut étre capable :
1. de dire que la représentation graphique de f est symétrique par rapport a I’axe des ordonnées Oy
2. d’éerire f(x) = f(—x)
3. d’avoir les représentations graphiques des fonctions 22 et cos x en téte et étre capable de les tracer,
en notant les coordonnées des points importants.



Chapitre 1

Généralités sur les fonctions
numeériques

L’objectif de ce chapitre est de faire des rappels sur ce que vous avez vu au lycée a propos des fonctions
numériques.
Nous étudierons dans le chapitre suivant plus en détail les fonctions usuelles.

1 Ensembles de nombres

On appelle ensemble de nombres E une collection de nombres distincts, bien définis, que 'on peut ca-
ractériser sans ambiguité.

Si Pensemble est discontinu, on note ses éléments entre accolades.

Exemple 1.1
L’ensemble des nombres entiers compris entre —2,5 et 2,5 est E = {—2,—1,0,1,2}.
Lorsque ’ensemble est continu, on peut le noter entre crochets et on parle alors d’intervalle.

Exemple 1.2
e L’intervalle des nombres réels compris entre —2 et 2, ces deux valeurs étant incluses est noté [—2,2].
e L’intervalle des réels compris entre —2 et 2, ces deux valeurs étant exclues est noté | — 2,2[.

e L’intervalle des réels inférieurs ou égaur a —2 est noté | — oo, —2].

Pour définir un ensemble on peut écrire chacun des éléments, les désigner par une formule générale, ou faire
appel a une logique de récurrence.

Exemple 1.3
L’ensemble des entiers positifs pairs peut étre noté E = {2k ; keZ ™} ou E={0;2;4; ..}

Pour signifier qu’un élément a appartient a I’ensemble F, on note a € E. Pour signifier qu’'un élément a
n’appartient pas & I’ensemble F', on note a ¢ F.

Exemple 1.4
Soit Uensemble E={-2; —1;0; 1; 2} :-2€ F mais3¢ E.

Ensembles usuels :

e Ensemble des nombres entiers naturels (entiers positifs) :

N={0;1;2; ..}
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e Ensemble des nombres entiers relatifs (tous les entiers, positifs ou négatifs) :
Z={.;-2;-1;0;1;2;..}
e Ensemble des nombres rationnels :

Q:{% . abeZ ; b;é()}

C’est I'ensemble des nombres qui s’expriment comme le quotient de deux nombres entiers. Le déve-
loppement décimal d’un nombre rationnel est toujours périodique au bout d’une certaine décimale.

e Ensemble des nombres réels R.
C’est I'ensemble des nombres qui peuvent étre représentés par une partie entieére et une liste finie ou
infinie de décimales, par forcément périodiques.

e Ensemble des nombres complexes :
C={a+ib ; a,beR}

e L’ensemble vide (qui ne contient aucun élément) est noté @.

Exclusion de certaines valeurs :

e Pour signifier que ’on ne considere que les nombres positifs dans un ensemble donné, on ajoute un
+ en indice.
De méme pour signifier que ’on ne consideére que les nombres négatifs dans un ensemble donné, on
ajoute un — en indice.

Exemple 1.5
Zy=N={0;1;2; ..}
Z_={.;—-2;—-1;0}

e Pour signifier que 1'on exclut le nombre 0, on ajoute un * en exposant.

Exemple 1.6
72-={.;-2; -1;1;2; ..}

e On peut exclure certaines valeurs d’un ensemble en utilisant le symbole \.

Exemple 1.7
Pour l’ensemble E contenant “tous les nombres entiers naturels sauf les multiples de 107, on peut

éerire : E =N\ {10k ; keN}

Relations entre les ensembles :

Soient deux ensembles E et F.

e Si tous les éléments de F appartiennent également a F', on dit que E est inclus dans F et on note :
ECF.

Exemple 1.8
NcCZ

e L’ensemble des éléments qui sont a la fois des éléments de F et des éléments de F' est appelé inter-
section des ensembles F et F et est noté £ N F.

Exemple 1.9
Sotent £ = {1,2,3} et F ={2,3,4,5}, alors ENF = {2,3}

e L’ensemble des éléments qui sont des éléments de E ou des éléments de F est appelé réunion des
ensembles F et F' et est noté FU F.
Attention, en mathématiques le mot “ou” est un “ou” inclusif : il signifie ou/et.

Exemple 1.10
Soient E = {1,2,3} et F' ={2,3,4,5}, alors EUF ={1,2,3,4,5}
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Ensembles de n-upplets :

On peut également ne pas considérer des nombres isolés mais des couples de nombres, des triplets, des
quadruplets, etc ...

Par exemple lorsque ’on trace un graphique, un point du plan est représenté par deux nombres : son abscisse
x et son ordonnée y. Ainsi les points du plan peuvent étre représentés par 'ensemble {(x,y) ; z,y € R}
Cet ensemble est noté R x R ou R2.

Plus généralement, on appelle produit cartésien d’un ensemble E = {a} par un ensemble F = {b}

Pensemble des couples (a,b), et on le note £ x F' = {(a,b)}.
Dans le cas particulier oit E = F on note E x E = E2.

2 Fonctions

2.1 Définition

Une fonction est une relation entre un ensemble de départ E et un ensemble d’arrivée F', qui a tout élément
de F fait correspondre un élément de F'.
On note :

f: E = F
z = y=f(z)

z est un élément de I’ensemble E.
y est un élément de ’ensemble F', qui est lié & x par une relation précise définissant la fonction.

y et appelé tmage de x par f.
x et appelé antécédent de y par f.

Exemple 1.11
La fonction carrée est une fonction de R vers RT que l'on peut écrire :

f: R — RT

r — f(z)=2?

Remarque 1.1
Il faut faire attention a ne pas confondre la fonction f avec le nombre f(z).
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2.2 Représentation graphique d’une fonction

La représentation d’une fonction f : x — y = f(x) dans un repere (O, uy,uy) est 'ensemble des points M
de coordonnées (z,y).

L’étendue des ensembles de départ et d’arrivée étant souvent différentes, on ne représentera pas toujours
(et méme tres rarement) les fonctions dans un repeére orthonormé.

Exemple 1.12

2.3 Domaine de définition d’une fonction

Le domaine de définition Dy d’une fonction f est le sous-ensemble des réels possédant une image par la
fonction f.

Pour déterminer ’ensemble de définition d’une fonction il faut se poser la question : pour quelles valeurs de
x a-t-on le droit de calculer f(x) ¢

Voici le rappel de quelques régles pouvant vous aider a déterminer I’ensemble de définition d’une fonction :

e Le dénominateur d’une fraction ne doit pas s’annuler ;
e Ce qu’il y a sous une racine carrée doit étre positif ou nul;
e 2=y x= /To0ux=—\/T0;

e Va2 =|z| (et pas “x ou - 2” comme certains d’entre vous auront envie de 1’écrire, car une racine est
toujours positive...).

Exemple 1.13 1
o f1:x— —.
X
1l ne faut pas que x =0 : Dy = R*.
1

° fQLHﬁ
U'f(J,YI,tl’;l%U:>.”I:§£1.'DQZR\{l}.
o f3:x—\/x.

Il faut x > 0 : D3 =R,
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) 1
o fyix— ——.
Ja —
Il faut —1 >0 (> 0 a cause de la racine et # 0 car cette racine est au dénominateur d’une fraction)
= x>1:Dy=]1; +o0l.
o f5:x /||
Il n’y a aucune restriction : Dy = R.
1
x2—-1"
Il ne faut pas que x> —1=0= 2 =+1 : Dg =R\ {1; —1}.

o f(; [

2.4 Sens de variation d’une fonction

Soit une fonction f définie sur un intervalle Dy et soit un intervalle I C Dy.

e f est croissante sur l'intervalle I si :
Vo, a0 €1 a9 > a1 < flaa) > fla)
f est strictement croissante sur l'intervalle I si :
Vo, €I 29 > 11 & f(ag) > f(a7)
e f est décroissante sur l'intervalle [ si :
Vo, 20 €1 29> a1 & faa) < faq)
f est strictement décroissante sur 'intervalle I si :
Vo, a0 €1 29 > 11 & fa2) < f(a7)
e f est monotone sur Uintervalle I si f est uniquement croissante sur I ou uniquement décroissante

sur I.
f est strictement monotone sur l'intervalle I si f est uniquement strictement croissante sur I ou

uniquement strictement décroissante sur I.

2.5 Parité

Définition

Soit une fonction f définie sur un intervalle D.

e f est paire si son domaine de définition est symétrique par rapport a zéro et si pour tout z de
I'intervalle de définition f(—z) = f(z) :

VeeD : —xzeD et f(—z)=f(z)

e [ est impaire si son domaine de définition est symétrique par rapport a zéro et si pour tout = de
Iintervalle de définition f(—z) = —f(x) :

VeeD : —xzeD et f(—z)=-—f(z)

Pour déterminer la parité d’une fonction, il faut procéder de la maniere suivante :

Non : Il n’y a pas lieu d’étudier la parité

e
Dy est-il centré en 07? f(—z) = f(z) : la fonction est paire
N e
Oui : On calcule f(—z) pour tout € Dy —  f(—z) = —f(x) : la fonction est impaire
N

f(=z) # f(2) et f(—x) # —f(a) :

la fonction n’est ni paire ni impaire
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Propriétés des courbes représentatives des fonctions paires et impaires :

e La courbe représentative des fonctions paires dans un plan (z ; y) orthogonal est symétrique par
rapport a la droite x = 0.

e La courbe représentative des fonctions impaires dans un plan (z ; y) orthogonal est symétrique par
rapport & origine (0 ; 0).

3 Exemples de fonctions

Préciser pour chacune des fonctions suivantes son domaine de définition et étudier sa parité.

x — 2x+1

f+ R - Ry
x = a2
f: R - R,

r = (r—12+3
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f: R = R

f: RJ’_ — ]R_;,_
x =z

kﬁ
~
1 1
8|~ =

f: R* - R

z = |z

CHAPITRE 1. GENERALITES SUR LES FONCTIONS NUMERIQUES
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fiRL o

T =

f+ R —

T

R

Inx

(15 1]

COS T

JJexp(x)

In(z)

Cos T
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Lsinz

T >  sinx sz m oni2 ] B o w2 ) ]

4 Opérations sur les fonctions

Soient deux fonctions f et g définies respectivement sur les ensembles Dy et D, .

4.1 Addition de fonctions

La somme des fonctions f et g est la fonction s définie par :
s=f+g : wos@)=(+9)()=f(r)+9(z)

Domaine de définition :

On calcule séparément f(x) et g(z) donc z doit appartenir aux deux domaines de définition :
D, =D;ND,

Cette opération est :
e commutative : (f+¢g) = (g+ f)
e associative: f+ (g+h)=(f+g9g)+h=f+g+h

Exemple 1.14 1 1
Sotent f:x— \J/retg:x— -3 On définith = f+g=x+— J/x + ey

T — T —
Dy =Ry et Dy =R\ {2} done D, =Ry NR\ {2} =R, \ {2}

4.2 Produit de fonctions

Le produit des fonctions f et g est la fonction p définie par :
p=1rxg : xeopl)=(fxg)(z)=f(z)xg(z)

Domaine de définition :

On calcule séparément f(x) et g(z) donc z doit appartenir aux deux domaines de définition :
D, =DrND,

Cette opération est :
e commutative : (f x g) = (g x f)
e associative : f X (g x h)=(f X g)xh=fxgxh

Remarque 1.2
La multiplication d’une fonction par une constante est un cas particulier du produit de fonction :

VAeR : Af:z—= (Af)(z) =A% f(z)

CHAPITRE 1. GENERALITES SUR LES FONCTIONS NUMERIQUES 13



Exemple 1.15
Pour les deux fonctions [ et g précédentes, on définit j = f X g =x —

D; =Ry NR\ {2} =R, \ {2}

NG
x—2

4.3 Quotient de fonctions

Le quotient de f par g est la fonction ¢ définie par :

f f(z)

(J:E : xHq(m):ﬁ

Domaine de définition :

2 doit appartenir aux domaines de définition des deux fonctions f et g, mais il faut en plus que g(z) ne
s’annule pas :

Dy, ={xeDsNDy; g(x) # 0}

£
Cette opération n’est a priori ni commutative <f # ‘ch) ni associative (Z #* f)
g

Exemple 1.16
Soient les fonctions [ :x — v/x — 1 définie sur Dy = [1; +oo[ et g : x> x — 3 définie sur R.

La fonction ! est la fonction qui ¢ x associe 5 et son domaine de définition est [1 ; +oo[\{3} =
g x =
[1;3[U]3; +o0]

4.4 Composition de fonctions

On définit la fonction composition “f puis ¢g”, notée g o f (“g rond f”) par :

gof : x—=(gof)(x)=yg(f(x))

Soit en détaillant :

Domaine de définition :

La détermination de I’ensemble de définition Dy, s de la fonction composée est plus délicat que pour I’addition
et la multiplication.

Comme on commence par appliquer la fonction f, les valeurs de & qui sont permises doivent bien évidemment
appartement a Dy.

En deuxieme lieu on applique la fonction g & f(z). Il faut donc que f(z) appartienne a D,.

Dyoy est donc "T'ensemble des éléments de Dy tel que leur image par f appartient a D,”, ce qui s’écrit :

Dgof = {l’ € Df } f(fE) S Dg}

La composition de fonction :
e est associative : fo(goh)=(fog)oh=fogoh

e n’est pas commutative : go f # foyg

14 BASTIEN MARGUET, MATHEMATIQUES



Exemple 1.17
1. frx—a?etg:aor3x+1

e Domaine de définition de go f :
Dy =Dy =R donc il n’y a aucune restriction : | Dgoy = R |.

e Détermination de go f :

ZI?’L:L‘2*£)3£IT2+1 : ‘gof:;L‘Hgof(:r):3:r2+1

1
2. frx—=3z+4delg:y— —
Y

e Domaine de définition de go f :

Dy =R et D, = R*.

4
Il faut x € Dy =z € R et f(x) € Dy = 3z +4 # 0, donc DgofR\{S}

e Détermination de go f :

oy 3z +44% gof:xrgof(x)=

3x+4 3x+4

3 fix——xetg:xz—Jx

e Domaine de définition de go f :
Dy =R et D, =R,

Il faut x e Dy = x €R et f(x) €Dy = —2 > 0= 2 <0, donc|Dgo f=R_

e Détermination de go f :

Léfloi)\/jl : lgofixzgof(z)=vV-a

Remarque 1.3

1l est important de bien procéder de la maniére précédente pour déterminer le domaine de définition. Il
ne faut pas se contenter de déterminer ’ensemble de définition a partir de l’expression de g o f, car dans
certains cas on n’obtient pas la méme chose.

Par exemple, considérons les fonctions f : x v+ /T et g: x> 2.

On calcule go f(x) : x — (\/5)2 = 2.

Si l'on se contente de regarder cette expression de g o f(x), on est tenté de conclure que Dyoy = R.

Or pour appliquer la fonction f il faut v € R4 ...

5 Fonction réciproque

5.1 Introduction

La fonction réciproque d’une fonction f, noté f~! est la fonction qui permet d“annuler” 'effet de f.
C’est-a-dire que si 'on applique f~* & f(x), on retombe sur .

Intéressons nous par exemple au thermometre a résistance de Platine. Ce thermometre est en fait une tige
métallique dont la résistance varie en fonction de la température suivant une loi affine :

R:Tw— R(T)=aT +b
ou a et b sont des coefficients dont les valeurs sont tabulées.

Si 'on veut connaitre la température a partir de la mesure de résistance, il faut trouver une fonction qui,
s’appliquant a R, permette de retomber sur 7. Cette fonction serait alors la fonction inverse de la fonction
R.
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5.2 Fonction bijective

Définition

Une fonction f : E — F est dite bijective si tout élément de F' est I'image d’un seul élément de E.

Graphiquement, pour tout réel de F' la droite d’équation y = y coupe la courbe représentative de f en un
seul point.

Exemple 1.18
Voici deux exemples :

. g: R — Ry |
La fonction n’est
r 2P
pas bijective car chaque élément y de
Ry a deux antécédents par f : \/y et

_\@.

3z —1

Par contre la fonction ¢

h: R —- R o ‘
est bijective. s
r — 3r—1

Propriété :

Si f est une fonction continue sur l'intervalle [a ; b] et strictement monotone sur |a ; b[ alors f est une

bijection de [a ; b] sur [f(a); f(b)] ou [f(b); f(a)].

On pourra utiliser cette propriété pour montrer la bijectivité d’une fonction.

Exemple 1.19
e Fonction affine :
fi: R - R . . , o
o f1 est strictement croissante sur R donc c’est une bijection de R sur R.
r = 2z+1
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e Fonction valeur absolue :

f2 : R = R . . .
: fa n'est pas monotone sur R : elle est décroissante sur R_ et croissante sur R .
x = |z

Ce n’est donc pas une bijection de R sur R.

5.3 Définition de la fonction réciproque

Exemple 1.20 fi: R = R

Soit la fonction
r = 2z+4+1

o f1 est strictement croissante sur R donc c’est une bijection de R sur R.

e Soity tel que y = f(x). On cherche a exprimer x en fonction de y :

-1
y=293—|—1=>x=yT
fi' R = R
Donc y—1
H —
v 2
. . fg: R — R
Soit la fonction
r o= oad

o [y est strictement croissante sur R donc c’est une bijection de R sur R.

e Soit y tel que y = f(x). On cherche a exprimer x en fonction de y :

—1

: R - R
Doncf2
T = Y
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5.4 Propriétés de la fonction réciproque

1 f~! est monotone et de méme sens de variation que f.

2 Dans un repere orthonormé, la courbe représentative de f~! est la symétrique de la courbe
représentative de f par rapport a la droite d’équation y = x.

Exemple 1.21
Fonction f(x) = 22 et sa réciprise f~1(z) = \/z sur RT :

v
2 s
flx)== Sl
s
12 7
s
s
v
’
s
s
10 v
s
s
’
s
s
s
8 7
s
s
z
s
s
6 L
s
s
+
s
s
’
4 7
s
s
T —1
‘ (=) =vz
, xr xr
2 A
s
g
7
7,
ofr
7lo 2 4 6 8 10 12 14
’ xr
’
h

6 Limites et continuité

6.1 Définition de la limite d’une fonction

La notion de limite est assez intuitive : dire que la fonction f a comme limite le nombre [ quand x tend vers
a signifie que si x se rapproche tres pres de a, alors f(z) se rapproche treés pres de [, ou encore qu’on peut
obtenir f(x) aussi pres de [ que 'on veut, & condition que z soit suffisamment proche de a.
On note :

lim f(z) =1 ou f(x) —1

T—a r—a

Cette notion s’étend aux limites infinies ou aux limites en ’infini.

6.1.1 Limite finie en P’infini

Si tout intervalle ouvert contenant le réel I contient toutes les valeurs de de f(z) dés que x est assez grand,
alors f(x) tend vers | quand x tend vers 400 :

Dans ce cas, la droite horizontale d’équation y = [ est 'asymptote de la courbe représentative de f en +oo.

De méme si tout intervalle ouvert contenant le réel | contient toutes les valeurs de f(z) des que x est assez
petit, alors f(z) tend vers [ quand z tend vers —co :

lim f(z) =1

r—r—00

Dans ce cas, la droite d’équation y = [ est I’asymptote horizontale & la courbe représentative de f en —oo.
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Exemple 1.22

fix—3—e" lim f(x)=3

T—r+00

25

6.1.2 Limite infinie en ’'infini

Si tout intervalle ouvert du type ] A, +o0o| contient toutes les valeurs de f(z) dés que x est assez grand, alors
f(z) tend vers +o0o quand x tend vers 400 :

lim f(z) =400

r—+o0
On a des définitions similaires pour lim f(z) = —oco, lim f(z) =4occet lim f(z)= —o0.
T—>+00 T——00 T——00
Exemple 1.23
frx—ax+1 TBTX f(x) = +0

x+1

6.1.3 Limite infinie en un point

Soit une fonction f définie sur un intervalle I éventuellement privé de a.
Si tout intervalle de la forme | A, +o0[ contient toutes les valeurs de f(z) dés que z est suffisamment proche
de a, alors f(z) tend vers +o0o quand z tend vers a :

lim f(z) = 400

r—ra
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De méme si tout intervalle de la forme | — oo, A[ contient toutes les valeurs de f(x) dés que x est suffisamment
proche de a, alors f(z) tend vers —oo quand z tend vers a :

lim f(z) = —o0

r—ra
Dans ces deux cas, la droite d’équation x = a est une asymptote verticale de la courbe représentative de la
fonction.

Exemple 1.24

[z In(z+2) lim2f(x) = —0

T——

8

6.1.4 Limite finie en un point

Soit une fonction f définie sur un intervalle I éventuellement privé de a.
Si tout intervalle fini contenant | contient toutes les valeurs de f(z) dés que x est suffisamment proche de
a, alors f(zx) tend vers [ quand z tend vers a :

lim f(z) =1

Tr—ra

Dans le cas ol f est définie en a, alors lim = f(a)
r—a

6.2 Limites a gauche et a droite

Il se peut que la limite de la fonction f en a ne soit pas définie, mais que I’on puisse définir une limite quand
x tend vers a par valeurs supérieures a a, et quand x tend vers a par valeurs inférieures a a. On parle alors
respectivement de :

e limite par valeurs supérieures ou de limite & droite et on note lim f(x) ou lim f(z).

+ z—a
r—a 3a

e limite par valeurs inférieures ou de limite & gauche et on note lim f(z) ou lim f(z).

r—a~ r<a

Exemple 1.25

: 1
Pour la fonction inverse : la limite en 0 n’est pas définie, mais on a lim — = —oc0 et lim — = 400
z—0- T z—0t T
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6.3 Convergence et divergence

e Lorsque la limite est finie en a (ou en +00), on dit que la fonction converge.

e Lorsque la limite est infinie en a (ou en +00) ou n’existe pas, on dit que la fonction diverge.

6.4 Calcul de limites
6.4.1 Limites simples

e Les limites sont évidentes lorsque la fonction est définie et continue au point auquel on cherche la
limite : si f est définie en a, alors lim f(z) = f(a).
r—a

e Les limites des fonction usuelles sur leurs ensembles de définition sont & connalitre.
Notez que ces limites peuvent étre faciles a retenir si vous avez en téte 'allure de la courbe représen-
tative de la fonction.

6.4.2 Opérations sur les limites

Somme de deux fonctions : lim (f + g)(z)
Tr—a

lim f(z)
. ra l +00 —00
lim g(x)
Tr—a
U 1+ 400 —00
+o00 +00 400 non définie
—00 —oo | non définie —00

Produit de deux fonctions : lim (f x g)(x)
T—ra

lim f(z)
I roa [>01]1<0 0 +00 —00
im g(z)
r—a
/>0 IxU | IxU 0 +00 —00
/' <0 IxU | IxU 0 —00 400
0 0 0 0 non définie | non définie
+00 400 —o00 | non définie +00 —00
—00 —00 400 | non définie —00 +o00
Quotient de deux fonctions : lim i(a:)
r—a (]
lim f(z)
) r—a I>01]1<0 ot 0~ 400 —00
lim g(z)
r—a
, { [ . _
[ { B
l/ < 0 17 p O O+ —00 +OO
ot +00 —o00 | non définie | non définie +o00 —00
0~ —00 +00 | non définie | non définie —00 +00
+00 ot 0~ ot 0~ non définie | non définie
—00 0~ ot 0~ 0t non définie | non définie
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Ces tableaux font apparaitre des cas ou I’on ne connait pas la limite. On parle de "forme indéterminée”.
) 00
Il s’agit des cas “0 x c0” , “=" |, “—" et “400 — 00”.
00
Attention, cette notation n’est par rigoureuse et ne doit pas étre écrite dans une copie! ...

Ces indéterminations peuvent parfois étre levées grace aux différentes techniques que nos présenterons plus
loin.

6.4.3 Limites particuliéres & connaitre

. Tz _q
o Tim S0 _y o lim & -1
x—0 x x—0 x
. In(l142) 1—cos(z) 1
¢ mli% T * :clg%) 2 2

Pour tout entier naturel n :

X

o lim — =4 o lim z"lnx =0

Tx— 400 xn z—0+
e lim z"e®* =0 e lim e = 400
rrTee T—+00 ln(x)
. In(x)
o lim —~ =

z—+oco M

6.5 Méthodes pour lever les indéterminations

6.5.1 Quotients de polynémes :

2 n
ag + a1 + asxr® + ... + apx
Soit une fonction f(z) = — R S e e s
bo + b1 + box? + ... + b, x™
e Au voisinage de £o0o, on assimile chaque polynéme & son monoéme de plus haut degré non nul, et la
limite est la limite du quotient de ses termes de plus haut degré :

. . anpx™ . a
lim f(r)= lim —— = lim —u
T— 400 T— 400 bm.Tm x—+oo bm

n—m

On sait calculer cette limite.

e Au voisinage de 0, on assimile chaque polynéme a son monéme de plus bas degré non nul, et la limite
est la limite du quotient de ses termes de plus bas degré.
On sait calculer cette limite.

Exempl.e 1.%6+ o — 33 . 3,3 .
e lim —— = lim — = lim —-3x=-
T—+00 ,’1’2 +x—06 x—+00 ,’I,‘z T—+00
142 — 323
e lim # = lim -3z =+
r——00 T4+ a1 — 6 T——00
oo l+z—322 . 1 1
e lim ———— = lim — = ——
z—=0 2 +x —0 z—0 —0 6
2 +1 xl\/1—1/22 x
e lim L = lim u = lim m = lim —=1
xr—+00 xr — ] r—r+00 €xr — 1 r—+o0 I r—+00 I

6.5.2 Mettre le terme prépondérant en facteur :

Cette méthode peut étre utilisée pour les indéterminations du type “+o0o — 00”.

Soit par exemple a calculer lir_sr_l (Vdaz? + x — x).
T—r1+00

Il s’agit d’'une forme indéterminée du type “+oo — c0”. On met le terme prépondérant sous la racine en

facteur :
1 1
VAz? + o — 2 = [422(1+ —) —z = [22[y/1 + — —
?+r—z Jc(+4x)x |22] —|—4va

Donc lim (V4z® ¥z —z) = lim (\23;\ 1+4L$_m).
xr—r o0

r—r+o0
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Comme z tend vers +oo, |2z = 22 donc :

1
lim (V42?42 —2)= lim x(%/l—i———l)
r——+00 r—+00 4x
lim (2,/14— 4i — 1) =1let lim z = +oo,donc:
T—~+00 z T—+00
li 24/1+ L 1) =
m—ir—ir-loo Q?( 4 n = too

6.5.3 Factorisation et simplification :

[43 ”

La méthode de factorisation peut étre utilisée pour lever les indéterminations du type .

Elle consiste a trouver une racine commune au numérateur et au dénominateur et & simplifier la fraction.

Exemple 1.27 225046
e On veut calculer im ———.
r—2 .TZ — 6T + 8
On a 111112(1'2 —52+46)=0 et 1i1112(;r2 — 6z + 8), donc il s’agit d’une forme indéterminée.
Tr—r Tr—r
Le calcul de ces deux limites montre que 2 est une racine des deux polynomes, donc qu’ils sont

factorisables par (v — 2).
Les factorisations donnent 2% — 5x + 6 = (x — 2)(z — 3) et 2% — 62 + 8 = (v — 2)(z — 4).

D I 2 =5z +6 ox—3 1
onc lim = lim = —.
=272 —6x+8 zo22-—4 2
24 z—2)(z+2
e lim * = lim (@ )@ +2) =limzx+2=4
=2 r — 2 x—2 r—2 r—2

6.5.4 Regle de I’'Hospital

“ b2

00
Cette méthode permet de lever les indéterminations du type ou “—". Cette regle énonce que dans le
00

cas de ces deux types d’indéterminations :
f@) L f@)

) T A @)

Dans le cas ou ce ne serait pas suffisant, on peut appliquer une nouvelle fois la regle et passer aux dérivées
secondes.

Exemple 1.28

2
2 —8r+1
Soit a calculer lim 1287‘L+6
r—4 x4 — 16

0
1l s’agit d’une indétermination du type “6 7
L’utilisation de la régle de I’Hospital donne :
v? — 8x + 16 (2% — 8z + 16)’ . 2rx—38
lim = lim = lim =
r—4 x2 — 16 r—4 (;L’2 — 16)/ x—4 2
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7 Dérivation

7.1 Introduction
Une fonction permet d’associer a un nombre  un autre nombre, noté f(x), suivant un “calcul” donné.
Nous nous posons maintenant la question suivante : si le nombre x varie d’une certaine valeur Az, de com-

bien varie le nombre f(z)?

Localement, la pente a d’une fonction au point d’abscisse xy peut étre approchée par la pente de sa tangente :

_Af(x)  flzo+ Az) — f(w0)
T Az Az

.

7
;| pente a ¢

f(xo+Ax)

I (x0)

Cette pente traduit la variation A f(z) du nombre f(z) résultant d’une variation Az de z :

Af(z) =ax Ax

Pour avoir la “vraie” valeur de la pente, il faut faire tendre Az vers 0 :

0= lim f(zo + Az) — f(x0)
Az—0 Az
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7.2 Nombre dérivé

On appelle nombre dérivé de la fonction f en a le nombre :
@ — 1 L@ * = @)
e—0 €

On utilisera également la notation différentielle :

d _

9f () — iy S0 = F(@)
dz e—0 €

Il faut bien str que ce nombre existe !

On dit que la fonction f est dérivable en a si le nombre précédent existe.

On dit que f est dérivable sur un intervalle [ si elle est dérivable en tout point de cet intervalle.

Le nombre f/(a) est le coefficient directeur de la tangente a la courbe représentative de f en a.
L’équation de cette tangente est alors :

y = f'(a)(x—a)+ f(a)

7.3 Fonction dérivée

7.3.1 définition

Soit une fonction f dérivable sur un intervalle I.

La fonction dérivée de la fonction f est la fonction f/, notée aussi iz’ définie sur I, qui a tout = associe le
x
nombre dérivé en x : af
! /
x> fi(z) = —=(z
Fiae f@) = @)

Si la fonction f’ est elle méme dérivable, on peut calculer la dérivée seconde, qui est la dérivée de [ :
(@)= (f) ()

Cette opération peut se répéter tant que la fonction obtenue est dérivable.
On appelle dérivée n — ieme de la fonction f, et on la note f() la fonction obtenue en faisant n dérivations
successives.

7.3.2 Notation différentielle

La notation différentielle est une maniere de noter la dérivée, qui traduit tres bien la notion de variation
développée dans I'introduction.

Soit une fonction f: xz +— f(x).
Si z varie d’une quantité infinitésimale dz, alors f(x) varie d’une quantité infinitésimale d f(z) donnée par :

_4f

if =f@de &  f@)=2

En sciences, on n’utilise pratiquement que la notation différentielle, et il est indispensable que vous appreniez
a l'utiliser.
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7.3.3 Dérivées successives
On peut définir de méme les dérivées successives :

gy odofdfy  df
f(@—a(a =2

d /d a3
19w =g, (ﬁ) -

o) =

dr \ dzn—1

7.4 Dérivées des fonctions usuelles

d (dﬂ"—l)) i

T dam

Domaine de défini- | f(z) Domaine de dérivabi- | f'(z)

tion de f lité

Remarques / Exemples

1 n
R* i € Ny R* ~ Cas particulier de % avec o € Z_
R k = cste R 0 Cas particulier de z* avec a = 0
1 1
R T R* —_— Cas particulier de z® avec o = —
Ve 2z P v 2
1 1
R* — RrR* — Cas particulier de 2% avec a = ——
T 2z+\/x 2
log,x; a>0 1
R R La dérivée se déduit de la relation
zlna Inx
a#l log, t = —
R a®; a€ ]R:_ R Ina x a® La1 dérivée se déduit de la relation a® =
ez‘ na
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7.5 Dérivées et opérations

Soient u et v deux fonctions définies respectivement sur les intervalles D,, et D,,, et dérivables sur les inter-

valles I, et I,,.

On note u et v’ leur dérivées.

Domaine de défi-
nition de f

f(@)

Domaine de dérivabi-
lité

f(2)

Remarques / exemple

axXu(z); a€R

I,

a x u'(x)

C’est un cas particulier du cas
précédent avec wv(z) = a =
Exemples
f@) | f(z)
cste
322 | 3 x 2z =6z
3 12
4 | T 23

Dy \ {z ; u(z) =0}

; ;neN
[u(@)]™

Iy \{z ; u(z) =0}

T (@

C’est la méme relation que précédem-

ment avec = [u(z)]™" et

—n X = —n x u'(z) x

[u(z)]"
[u(z)] """ !. Seul le domaine de dé-
finition change.

D. N D, \
{z ; v(z) = 0}

u(z)

v(z)

Iy 0 Iy \ {z ; v(z) = 0}

u'(z) x v(z) — v (z) X u(z)

[v(@)]?

On peut aussi le voir comme

le produit u(z) X ﬁ .
f@) | F'(@)

sin x cos? ¢ + sin” x

cos T cos2 z
1
cos2 x
1
Inx zz—Inz
z 2

1—Inz

2

{m ; e 'Du} u(az); a €R au’ (az) C’est un cas particulier du cas
a précédent avec w(z) =  ax.
f@) | (=)
cos(3z) | —3sinz
64:0 4642
In(5z) % = %
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7.6 Interprétations de la dérivée d’une fonction

On a déja dit que la dérivée d’une fonction en un point a est le coefficient directeur de la tangente en ce point.

La détermination de la dérivée permet ainsi de déterminer le sens de variation de la fonction :

o f'(x) >0Vx el = [ est croissante sur I
f'(x) >0Ve € I = f est strictement croissante sur I

o f(x)<0Vzx el = [ est décroissante sur I f'(z) <0Vx €I = f est strictement décroissante sur I

e Un changement de variation d’une fonction se traduit par un changement de signe de la dérivée :

xo est un extremum (minimum ou maximum) de la courbe
< f'(x0) =0 et f'(x) change de signe en xg

La tangente a la courbe en ce point est alors une droite horizontale.
La nature de 'extremum est donné par la dérivée seconde :

/(o) >0 = 0 est un minumum

f"(xo) <0 =z est un maximum

La dérivée traduit donc les variations de la fonction.
Si x varie d'une quantité infinitésimale dz autour d’une valeur xg, alors le nombre f(z() varie d’une quantité
infinitésimale § f(z) = f'(xg) X 0z :

f(xo +6x) = f(xo) + f'(x0)dx
df(x)

Par exemple :
e La vitesse d’un objet en mouvement est la dérivée de sa position par rapport au temps;
e [’accélération d’un objet en mouvement est la dérivée de sa vitesse par rapport au temps;

e La vitesse de réaction d’une transformation chimique est la dérivée de la concentration d’un des
produits par rapport au temps;

e etc...

Cette interprétation de la dérivée est tres importante dans la détermination des incertitudes.
Considérons par exemple le calcul des pertes par effet Joule dans une résistance R.
La puissance des ces pertes est donnée par :

P=RxI?
ol R est la valeur de la résistance et I 'intensité du courant la parcourant.

La valeur de la résistance étant connue, pour déterminer la valeur de P on procedera a une mesure du
courant I. Comme toute mesure, celle-ci sera entachée d’une incertitude : on mesurera I = Iy £ Al

Il en résultera donc une incertitude sur la valeur de P calculée.

Cette incertitude sera donnée par la relation :

AP = P'(Iy) x AI => AP = 2RI,AI

Exemple 1.29
Calculer avec son incertitude la puissance perdue par effet Joule dans une résistance de (1004+2) Q parcourue
par un courant de 1,5 A.
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8 FEtude d’une fonction

Lorsque 'on étudie une fonction il faut :
e Déterminer son domaine de définition ;
e Déterminer les limites importantes (aux bornes de son intervalle de définition) ;
e Déterminer sa dérivée;
e Construire un tableau de variation ;

e Eventuellement tracer sa représentation graphique (ou tout au moins une ébauche) en faisant appa-
raitre les valeurs remarquables.
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9 Exercices du chapitre 1

Exercice 1.1
Ecrire sous la forme “condensée” les ensembles suivants :

Ensemble E; des multiples naturels de 3.

Ensemble E5 des nombres entiers relatifs impairs.

Ensemble E3 des entiers positifs qui s’écrivent avec trois chiffres.

Ensemble E4 des entiers négatifs.

Ensemble E5 des nombres positifs, exceptés les multiples de 5.

Ensemble Fg des points du plan situés au dessus de la droite d’équation y = 2.

Ensemble E; des points du plans situés sur le cercle de centre (0 ; 0) et de rayon 3.

Exercice 1.2
Soient les ensembles et intervalles suivants :

Fr={1;2;3;4} Fy;={1; —-1;5} I, =]-2; 2|
Fy={-1;-2;-3; -4} L =[-2;2] I3 =]0; 1]
Exprimer :
.FlﬂFQ O(Flqu)\Fg Ollﬂlz 011\13
o [TUF, o [1UI e I1NIs o IsNE

Exercice 1.3
Traduire sous la forme d’un ensemble les inégalités suivantes :

l.xeRetz >3
2. xeERetxz—2#0

3.yeNet%eN

1
4. ae R et — >4
a

5. z€Retz?#9
6. c€Retz2—1+#0

Exercice 1.4
Déterminer les domaines de définition des fonctions suivantes :

2—-z — 2
— 6. = —4

2. fot) =3 -1t 2

3. f3(x) = /(x — 1)(x2 —9) @) =13

4. f4(t) =Vt2 -4

1 8. fs(xz) =+/0,5 — cos(z)

5. fs(x) = N Se restreindre a lintervalle x €] — 7, 7]

Exercice 1.5 3041 ' 3z — 11

Soit les fonctions f : z +—

et g .
x—4
Déterminer leurs ensembles de définition et vérifier que pour tout réel ¢ # 2 on a f(t — 2) = g(t + 2).

Exercice 1.6
Etudier la parité des fonctions suivantes :

L fi(x) =2° — 6z 3. fg(x)=x3+%
] 4. falz) =va -1
2. fa(z) = PR 5. fs(z) = (z —1)°
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Exercice 1.7
Pour chacune des fonctions f et g suivantes, déterminer fog et go f en précisant leur ensemble de définition :

L frz—ztletgiz— — .
s —1

1
:tb—>\/7tetg:xr—>72.
T —

T =

f
3. froxrJretg:xr 22
f

1 1

etg:y— —+1.
z—1 Y
Exercice 1.8

Pour chacune des fonctions suivantes, déterminer leur fonction réciproque si elle existe (en limitant éven-
tuellement les ensembles de définition et d’arrivée de la fonction).

. fli R — R 1 f4: [—1,+OO[ — RJr
x = 2@-1)+7 z = Vax+1l
5 *
fz:R\—§ - R fs: R - R
2 5.
> ! r = a3
* 2@ —1)+7
3 fso (2,400 — Ry 6 fo: J—o0o3 1] = Ry
r = (r—2)? r = (x—1)*

Exercice 1.9
Calculer les limites des fonctions suivantes aux bornes de leur ensemble de définition :

l.gg:x— —22—-6 3 5. gsx—=1—=x

. T
gs:x 3_»
1 r—3 1
2. T —— 4. Tx 6. T Sa—
g2 & x—5 ga: T ey ge - & 22 — 62+ 8
Exercice 1.10
Calculer les limites suivantes :
422247 . 32243
1. lim —— 8. lim —————
z—0+ 2z - 2243 z——o0 23 4 622 + 8
3422247 " e—too 22 + 6
2. lim L2t 9. lim /142
r—0~ 2x 22 +3 T——400 B
x4+ 222+ 7 6. IEIPOO 216
3. lim ———— * 10. lim (/14 &
T—+00 2x 322 43 T——00 z
234202 47 7. lim 3,3672
4. lim ————— e—oo 227 4 6% + 8 11. lim (/14 %
T——00 2z x—0 z
E)fercwe 1..11 NEw)
Soit la fonction = : t = z(t) = 5————.
12 —4t 44

1. Déterminer le domaine de définition de x.

2. Montrer que la courbe représentative de x a une asymptote verticale et une asymptote horizontale
dont vous donnerez les équations.

3. Tracer 'allure de la courbe représentative de .

Exercice 1.12
Calculer les limites suivantes en utilisant 'une des méthodes permettant de lever les indéterminations :
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z? =7 3. lim (V42?2 +6x+1—2)

1. 1' S ——— xT oo
xﬁnfoo 3z +5 4 I.H_
— I, V)
. T — .
Exercice 1.13
Déterminer les dérivées des fonctions suivantes :
1. fl:xb—>3x2+x—2 6. fGip’—>*5 11. fn:choz‘xsini:Q
1 .
y—1 7. frixe T 1 2
T = 13. LT ( — x)
3. fsrx Vat 42z -1 8. fs x> sin(3z) Jis z ve
4. fg:t+ 3tcost 9. fo:xr>tan(z? +1) 14. fi4: x> sin*(2z)
x4+ 2 . 1 cos(4x) + 1
5.f5:x'—>x2_6 10-f10-96'—>\%E 15.f15:xeﬁ

Exercice 1.14
Pour chacun des fonctions suivantes, déterminer 1’équation de la tangente & la courbe représentative au
point d’abscisse a :

. firzr2? ; a=-1
1
2. forx—— 5 a=2
x
3. fs:xrsin(2z) ; a=0

4 fr:x—3x—r+1 ; a=2

Exercice 1.15
Soit une fonction f dérivable sur R telle que f(1) =2 et f'(z) = Va2 + 1.

Sans chercher & calculer de primitive, déterminer une valeur approchée de f(1,1).

Exercice 1.16 | |
En physique, quand on a une bobine d’inductance L el

et un condensateur de capacité C en série, la charge I I |
q portée par une armature du condensateur est don-
nées par ¢ = C'u ou u est la tension aux bornes de

chacun des composants. U

d d
On a de plus u = —Ld—; et i = d—z ou ¢ est I'intensité du courant.
d2q 1
Mont r — 4+ —q=0.
ontrer que l'on a 12 + ch

Exercice 1.17

Dans le but de calculer son volume on a mesuré 'arréte d’'un cube de 57 ecm de co6té en commettant une
erreur égale a 0,05 cm.

On note V le volume du cube calculé et AV D'erreur commise sur le calcul.

En admettant que ’on peut approximer AV par dV, donner la valeur du volume avec son incertitude.
Exercice 1.18

Soit la fonction z : t — 3t3 — 3t? — ¢.
On cherche a résoudre ’équation z(t) = 9.
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Déterminer la dérivée de la fonction x.
Etudier le signe de /(t).
Dresser le tableau de variation de x en faisant apparaitre les valeurs des extrema et les limites.

Combien 'équation a-t-elle de solution ?

BN B

Procéder par tatonnement afin de trouver une solution de 1’équation a 0,01 pres.

Exercice 1.19

Pour tout systéme physique, un état d’équilibre est un état dans lequel 1’énergie est extrémale.

Un état d’équilibre est qualifié de stable si lorsque 'on s’écarte faiblement de cet état, le systeme évolue
spontanément de maniere & y revenir. Un état d’équilibre stable correspond & un minimum d’énergie.

Un état d’équilibre est qualifié d’instable si lorsque 1'on s’écarte faiblement de cet état, le systéeme évolue
spontanément de maniere a s’en éloigner davantage. Un état d’équilibre instable correspond & un maximum
d’énergie.

On s’intéresse a une objet de masse m suspendu a
un ressort de raideur k£ > 0. Il y a compétition entre
le poids, qui tend a entrainer l'objet vers le bas et X
la force de rappel du ressort, qui est dirigée vers le

haut et le retient.

L’énergie potentielle de I'objet est alors donnée par :

1
E =—-mgz + ika + Ey
ou g est I'accélération de la pesanteur, Fy une constante et x la position du ressort.

Déterminer la position d’équilibre stable de la masse pour m = 1,3 kg et k = 35 N/m~".

Exercice 1.20
Soit la fonction g dont la courbe représentative est la suivante :

g(x)

1. Déterminer graphiquement une valeur approchée de ¢(3).
2. Déterminer graphiquement une valeur approchée de ¢'(1,5).
3. Quel est le signe de g”’(2) ?
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Exercice 1.21
Cet exercice est inspiré d’un probléme du cours de Thermique (Semestre 2). Vous pouvez essayer de direc-
tement répondre a la derniére question. La question 1 n’est la que pour vous guider.

On cherche a déterminer la température d’'une ampoule de 60 W a fil de tungstene.
Un bilan de puissance permet d’obtenir ’équation suivante :

23T +5,33.10° 37T = 14774

La température du fusion du tungstene est d’environ 3000 K, et on prendra la température ambiante a 293
K.

1. Questions préliminaires :
Soit la fonction f(T) = 23T + 5,33.10-T* — 14774.
(a) Calculer f(293) et £(3000).
(b) Déterminer la dérivée de f.
(c)

(d) En déduire que Iéquation du bilan de puissance a une unique solution.

Montrer que f est strictement croissante sur [293 ; 3000].

2. Procéder par itération afin de déterminer la température de 'ampoule au Kelvin pres.

Exercice corrigé 1.1

Soit la fonction h =y — h(y) = y/4y? — 12y + 9.

1. Déterminer son ensemble de définition.

2. Montrer que la fonction h peut s’exprimer uniquement a ’aide de la fonction valeur absolue.

1. 11 faut 4y® — 12y +9 > 0 = (2y — 3)% > 0, ce qui est vrai pour tout réel z.
Donc .
2. h(y) = \/1!/,;, —12y+9=+/(2y — 3)? = | h(y) = |2y — 3|

Exercice corrigé 1.2
Soit la réaction chimique suivante :

3BrO~ = BrOs + 2Br~

On part d’une concentration ¢g en BrO~, et alors la concentration ¢(t) en BrO~ au cours du temps est

donnée par :
1
—— = — 4+ 3kt ou k est une constante
c(t) o
1. Donner Iexpression de c(t).

2. Déterminer 'expression de 'instant ¢y au bout duquel la concentration en BrO~ a été divisée par 2.
Faire I’application numérique avec co = 1mol/L et k = 0,01 L.mol~1.s71.

3. Cette réaction est-elle totale ?
On rappelle qu’une réaction chimique est totale si tous les réactifs ont disparu a la fin de la réaction,).

4. On réalise un premier mélange a l'instant ¢ = 0, et un deuxieme mélange a l'instant ¢; = 10s.

(a) Donner Pexpression de la concentration ca(t) en BrO~ dans le deuxiéme mélange.

(b) Donner l'expression de c2 en fonction de la concentration ¢; dans le premier mélange.

Co

1. |e(t) =

1 + 3kcot |
co 1
2. tg est tel que ¢(tp) = — == 1 + Bkcotop =2 = | tg = .
S 2 3kco

L’application numérique donne | to = 33,3 s |.
3. lim ¢(t) = 0 donc la réaction est totale.

t—+ oo
1. (a) ca(t) = c(t — 10) © = | ea(t) .
4. a) c2 =c = — )= ————————— |

S 1+ 3kco(t — 10) o 1 — 30kco + 3keot
1 1 1 1 1 i 1 (t)
(b) = — + 3kt — 30k et = — + 3kt donc — = — 30k = | co(t) = -

ca(t) co cq(t) co c2(t) c1(t) o 1 — 30ke (t) |
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Exercice corrigé 1.3 22

—x—6
Soit la fonction f: z +— a:

vr+3-1
1. Vérifier que f(z) = %%
z _

2. Déterminer son ensemble de définition.
3. Calculer lim f(x).
r——2

(x+2)(z —3)
Ve +3—-1
2. Il faut © +3 > 0 et /o +3 — 1 # 0, ce qui conduit & | Dy = [-3; —2[U] —2; +oof |

3. e On doit calculer lim f(x) :
r——2

1. (z —2)(z —3) =% —z — 6 donc on a bien f(z) =

(x+2)(x—3)=0
lim (vVz+3—-1)=0
T——2
. L <9,
On a donc une forme indéterminée du type 6

e On multiplie par le binéme conjugué (ou alors on utilise la régle de I’'Hospital : méme résultat) :

(z+2)(z—-3) (z+2)(z-3)(Vr+3+1) (z+2)(z-3)(Vz+3+1) . —s
(Ve ¥3—-1) (VzF+3-1)KzF+3+1) z4+3—1 =@-39z+3+1)

On calcule lim)f(.’l:) = 111112(;1‘ -3)Vx+3+1)=-5x2=| lim_f(z)=—-10|
x——2 T —r—2 x——2

Exercice corrigé 1.4

L’énergie E nécessaire a un poisson pour nager contre un courant de vitesse ¢ dépend de sa propre vitesse
v et de la distance d a parcourir.

On peut modéliser cette énergie par la relation :
avdd

v—cC

E =

ou a est une constante.

Déterminer, la vitesse v pour laquelle I’énergie dépensée est minimale.

o CdE d’E
E est minimale si =0et -
dv dv?

> 0.
| . dFE
e On commence par déterminer la ou les valeurs de v permettant v =0:
dv

dE 3v2d(v — ¢) — v3d av?d(2v — 3c)
=a

dv (v —¢)? (v —¢)?
dE 3c
Donc — =0=2v—-3c=0=—= v = —.
dv 2
12
e Il faut ensuite vérifier que pour cette valeur on a bien — >0:
dv?

dE 2adv(v? — 3cv + 3¢?)

dv (v —c)3
dE 3c
On calcule v = =18d >0
dv 2
. . L . 3c
Donc I’énergie est minimale si | v = rl
G
Exercice corrigé 1.5
Soientf:xl—>—2etg:x»—>x2.
:L‘ —

1. Donner leurs ensembles de définition.
2. Déterminer f o g et son ensemble de définition.
3. Déterminer g o f et son ensemble de définition.

1. Dy =R\ {2} et Dy =R.

2

2 1
2. fogim— —(—— 5 et Doy = R\ {V2; —V2}.
z2 —

2z — 1\ 2
3. goj‘;IH( ! 2) ot Dyoy =R\ {2}.
-

Exercice corrigé 1.6
Calculer :
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1—cosx

lim 5
x—0 €T
. Vli4+z—1
lim ——
z—0 €T
. a®+6x+5
lim ————
z——-1 341
Va2 4+6x+2-3
m
z—1 {L‘3 —1
i 1 —cosx —
lim ———— = — (Multiplier par 1 + cosz au numéra-
z—0 2 2
teur et au dénominateur).
vVi+z—1
lim +7I = — (Multiplier par la quantité conju-
z—0 x 2
guée).
2 .
T 6x + 5 4
;,.Lml1 % = (Factoriser par (z + 1)).
X V2 +6x+2-3 4
lim —mM8M8M8MM = —
z—1 x3 —1 9

Exercice corrigé 1.7
Soit la fonction f : x + 2% 4+ 3z — 1.

La variable x est également donnée par une fonction

Calculer % et j—z

T

sin 2x
5. lim
=T L — T

6. lim (vVa?+2—3x)

T—r+00
7. lim (Va?+2X +3-—2x)
T—+00

8. lim (e® — 3ze” — 2?)
T—+00

X sin 2z
5. lim =
ToT T — T

2 (Poser h =z — 7).

6. lim (V22 42— 3z) = —oo (Factorisation).
xr— 400

7. lir}n (Vz?2 +2X +3 — z) = 1 (Multiplication par la
xT—r oo

quantité conjuguée).

8. lim (e® — 3ze® —a?) =
x— 400

—o00

Y =
Y

d
. En déduire d—f(y) grace a la formule du composition.
Y

Déterminer l’expression de la fonction g : ¢ — f o z(t) et déterminer sa fonction dérivée.

Comparer au résultat de la question précédente.

T
° 1:2(1:4»3
dz
dz 1
o | X
dy y?
df df 1z 1 1f 1 2
i:ij::(Z,’tﬂ»fD(ff)é 47 _ —(7+3)
dy dz dy y? dy 2 \y
) (1)2+‘; L () +3 4
° = (- 3IxX - — 1= = = + = —
g t t g 2 t
, 2 3
° !/(f):*ﬁ*ﬁ

1
e On obtient bien le méme résultat qu’a la question précédente : g’(t) = %(t)
Exercice corrigé 1.8
Dresser le tableau de variation de la fonction f : z — vz2 — 1.
La fonction est définie sur |—oo ;
Sa dérivée est la fonction f’ : x
On obtient le tableau de variation suivant :
x —00 —1 ‘.‘ 1 —+00
x - +
z2 — 1 +
I (@) -
—+o0 —+oo
f N e
0t 0t
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Chapitre 2

Fonctions usuelles

1 Fonctions trigonométriques (sinus, cosinus, tangente)

Les fonctions trigonométriques sont des fonctions dont la variable est un angle. Tous les résultats que l'on
donne par la suite sont pour des angles exprimés en radians (qui est I'unité naturelle des angles!).
Le sens trigonométrique est le sens inverse des aiguilles d’une montre.

1.1 Définition géométrique

Pour calculer le sinus, le cosinus ou la tangente d’un angle 8, on se place dans un triangle rectangle dont
I'un des angles vaut 6.

B C

Le sinus de 0 est égal au rapport du coté opposé sur ’hypoténuse :

AB
AC

sinf =

Le cosinus de 0 est égal au rapport du c6té adjacent sur ’hypoténuse :

BC
AC

sinf =
La tangente de 6 est égal au rapport du coté opposé sur le coté adjacent, ou encore le rapport du sinus sur
le cosinus :
AB  sinf

tan§ = BC ~ cosf
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1.2 Cercle trigonométrique

Le cercle trigonométrique est un cercle de rayon 1.
En parcourant le cercle, on peut y lire les valeurs de sinus et cosinus de I’angle entre ’axe horizontal et le

point sur lequel on se situe :

sin

Comme le rayon est de 1, pour chaque angle on a directement la valeur du sinus sur l’axe vertical et la

valeur du cosinus sur ’axe horizontal.
Les angles sont orientés : il sont positifs si on les parcourt dans le sens trigonométrique (sens inverse des

aiguilles d’une montre) et négatifs sinon.

Les valeurs des cosinus et sinus de quelques angles remarquables sont notés sur les cercles suivants :

[—7. 7] [0.27]
2n IQ_ "
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1.3 Définitions et propriétés des fonctions trigonométriques

1.3.1 Définition

1.3.2 Périodicité d’une fonction

Une fonction f : z — f(z) est périodique si elle se répete indéfiniment & I'identique & intervalles réguliers.
Le plus petit motif qui se répete est appelé motif élémentaire.

L’intervalle Ax correspondant & un motif élémentaire est appelé période de la fonction, et on la note
généralement T'. Cela signifie que :

VeeDy : fle+T)=f(z)

Les fonctions trigonométriques sont des fonctions périodiques puisqu’au minimum & chaque fois que 1'on a
parcouru un tour du cercle, on “revient au point de départ”.

Toutes les fonctions périodiques sont des combinaisons des fonctions trigonométriques.

1.3.3 Fonction Sinus

Définition
Llsinx
[ VAR [
[\ TR [\
Courbe / \ 2/ \ / \
représentative
\ \ \ \
\ \ L \ \
\ ] \ /L \ ]
Périodicité
Parité
Dérivée
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1.3.4 Fonction Cosinus

Définition
» COS T
12
08
[\ [\ [\
[\ [ [\
Courbe / \ / o \ / \
représentative
12 -3m 2 : 0 m™ m 3my/2 2m 5mi2 3m
xr
-0.2
ao ] \
-0.6 \ / \
W\ \
-1
1.2
Périodicité
Parité
Dérivée
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1.3.5 Fonction Tangente

Définition
| [t | | I
Courbe 0
I‘eprésentative 21 3mw/2 ud w2 0 w2 ™ 3m/2 5m/2 a:
Périodicité
Parité
Dérivé

1.3.6 Utilisation des nombres complexes

Il peut parfois étre intéressant d’utiliser les nombres complexes, notamment pour retrouver les relations
trigonométriques (voir formulaire). Pour rappel :

o cosz =R () e sinz =S () S (e™)

1.4 Relations trigonométriques

Ce sont les relations du formulaire. Vous devez savoir qu’elles existent et étre capables de les retrouver grace
au cercle trigonométriques et/ou aux nombres complexes.
Celles qui sont faciles & retrouver grace au cercle trigonométrique sont les suivantes :

cos(—a) = cos(a) cos(a + g) = —sin(a) | cos(a — g) = sin(a) cos(m + a) = —cos(a) | cos(m —a) = — cos(a)
sin(—a) = —sin(a) | sin(a + g) = cos(a) sin(a — g) = —cos(a) | sin(mr+a)= —sin(a) | sin(m —a) = sin(a)
tan(—a) = —tan(a) | tan(a + g) = _tanl(a) tan(a — g) = _tanl(a) tan(m + a) = tan(a) tan(m — a) = — tan(a)
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1.5 Fonctions sinusoidales

On appelle de maniere générale fonction sinusoidale toute fonction qui s’exprime comme un sinus ou un
cosinus. La forme générale d’une fonction sinusoidale est :

frx— f(z) = Asin(wt + ¢)

Asin(wzx + ¢)

e A est la valeur maximale de la fonction.
e ¢ est la phase a l'origine

e w est la pulsation. Elle est reliée a la période T' par la relation :

1.6 Fonctions trigonométriques réciproques

Les fonctions trigonométriques ne sont pas bijectives! Pour pouvoir définir des fonctions réciproques, il faut
donc restreindre les fonctions trigonométriques a un intervalle sur lequel elles sont bijectives.
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1.6.1 Fonction réciproque de la fonction sinus

Définition et propriétés :

Tm
Pour définir la fonction arcsin, on restreint la fonction sinus a I'intervalle [—5, 5]

Définition
arcsin(x)
w2
/ f
e
~ -
Courbe //
représentative - T Py o o > Y ) o6 o8 ]
P
7 :l)
] -
e
//
12
Parité
e . 1
Dérivée arcsin’ : r — ———
V1—22

Fonction arcsin et calculatrice :

Attention & l'utilisation de la fonction arcsin de la calculatrice!

Imaginons par exemple qu’on ait & résoudre 1’équation sin« = 0.5 dans l'intervalle [0 ; 27].

o1 . o . 7T
En utilisant le cercle trigonométrique on trouve deux solutions : x = s et x =

ol o

Si 'on tape arcsin 0,5 a la calculatrice on n’obtient qu’une seule solution : z =

11 nous manque donc une solution !

Lorsque vous demandez a votre calculatrice de calculer arcsin x, elle vous affichera le résultat compris dans
T
I'intervalle [—5, 5], par définition de la fonction arcsin.

Il faut toujours bien garder en téte que angle —x + 7 est également solution !
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1.6.2 Fonction réciproque de la fonction cosinus
Définition et propriétés :

Pour définir la fonction arccos, on restreint la fonction cosinus & Uintervalle [0, 7].

Définition
arccos(x)
\\
N
N -
N
Courbe SN
représentative " ~
N
\\
0
1 -0.8 0.6 0.4 0.2 0 0.2 0.4 06 0.8 %E
\
Parité
s e s ! 1

Dérivée arccos’ : T —————-

V1 — a2

Fonction arccos et calculatrice :

Attention a l'utilisation de la fonction arccos de la calculatrice !

Lorsque vous demandez & votre calculatrice de calculer arccos x, elle vous affichera le résultat compris dans
I'intervalle [0, 7], par définition de la fonction arccos.

Il faut toujours bien garder en téte que angle —x est également solution !
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1.6.3 Fonction réciproque de la fonction tangente
Définition et propriétés :

Pour définir la fonction arctan, on restreint la fonction sinus & I'intervalle | — g, g[

Définition
Nyretiahnll )
ctan(x)
w2
— =TT |
_—
//
Courbe
représentative
0
10 8 6 4 2 0 4 6 10 12
T
///
-———”
-T2
Parité
P li 1
Dérivée arctan’ : x — ——
14+

Fonction arctan et calculatrice :

Attention a I'utilisation de la fonction arctan de la calculatrice!

Lorsque vous demandez a votre calculatrice de calculer arctan z, elle vous affichera le résultat compris dans
. T PP .

Iintervalle [——, 5], par définition de la fonction arctan.

Il faut toujours bien garder en téte que 'angle = + 7 est également solution !

1.6.4 Egalités utiles

e cos(arcsinz) = /1 — 22 e sin(arccosz) = V1 — 2 o cos(arctan ) = 1
V14 a2
N
e tan(arcsinz) = —— o tan(arccosx) = L-x e sin(arctan ) = =

V1—a? x V1+z?
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1.7 Résolution d’équations trigonométriques
Lorsque 'on a a résoudre des équations trigonométriques il faut faire trés attention :

e A la périodicité des ces fonctions

e A Tl'utilisation des fonctions trigonométriques réciproques

Exemple 2.1

1
On veut résoudre ’équation cos(2x) = — sur R :
q (22) 7
1
cos(2x) = —
( 72 V2 T

= 2= Z[27r] ou 2x = —Z[Qﬂ']
== = %[77] ou x= —g[ﬂ']

2 Fonctions exponentielles et fonctions logarithmes

2.1 Fonctions logarithmes
2.1.1 Fonction logarithme népérien

Définition

Définition

In(x

Courbe | yd
représentative /

Parité

Dérivée
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Propriétés

Pour tous a,b € RY , pour tout n € R :

e In(1) = e In(a xb) = e In A
a
. a

. algél+ Ina = e In(a™) = e In (5) =

e lim Ina=
a——+00

2.1.2 Fonctions logarithmes généralisées

Définitions

Pour tout @ > 0 et a # 1, on définit la fonction logarithmique de base a :

log,: Ry — R

x — log,(z)=

La fonction logarithme la plus courante est la fonction logarithme de base 10, que ’on note log plutot que

logyg :
logip: Ry — R

In(z)
v = o) = log(e) =
tel que 10Y =z
Propriétés
Les propriétés des fonctions log, sont similaires & celles de In :
Ya>0,VneR:
L4 loga ($ X y) = loga T+ loga Yy
x
e log,(z") = nlog,(x) e log, (y) = log,  —log, y

2.1.3 A propos des fonctions logarithme

Les logarithmes permettent de simplifier des calculs compliqués sur des grands nombres :

e En passant a des nombres moins grands, plus facilement manipulables

Exemple 2.2
Plutot que de manipuler le nombre 100000, il peut étre plus aisé de manipuler le nombre log(100000) = 5.

e En donnant la possibilité de transformer des multiplications difficiles en simples additions.

Exen}ple 2.3 5
32 x \? devient log <32 X 7) =2x34+5-7

Certains phénomenes physiques se modélisent bien grace a des fonctions exponentielles. Par exemple, 1'in-
tensité du son est couramment exprimée en déciBel, une forme de logarithme, car nos oreilles ne sont pas
linéaires.
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2.1.4 Echelle logarithmique

Les fonctions logarithmiques ont la particularité de croitre tres lentement.

Les échelles orthonormées ne sont donc pas adaptées a leur représentation graphique, et on utilise plutot une
échelle logarithmique pour l’axe représentant log 10. La représentation graphique de la fonction z — logz
est alors une droite (voir les TP d’0OIS).

Exemple pour la fonction log; :

En échelle linéaire :

togx
o]

En échelle logarithmique :

logx

Les échelles logarithmiques permettent ainsi de percevoir des évolutions invisibles en échelle linéaire.

Exemple 2.4
Ce graphique représente les superficies (en km?) de quelques pays en échelle linéaire :

20000000

15000000
10000000
5000000 I I
0 1
o

l...----—— _______
w & ¥ T E 2 £ = T m §F £ 2 2 & o
o Z w > om0 o 2 S S £ = =] @ = =
= m £ = E = = S = = T o S =2 4 m
o =] = = = o L = bt m o o
= = = N o m e m q =
c = n = & T = N o @
= = o a = a
E: z T -
=
[=] 5 -
0] ] o
= S
=
w
o
m
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On ne voit rien pour les plus petits pays. Mais si on passe en échelle log, on voit tous les pays :

100000000
10000000
1000000
100000
10000
1000
100
10
1
g2 ©® £ 2 E s = 3 EE 5 = A4 =
= = = = = o o un} = m =
[ = E ui] [ T = o [
- o (O] =
s
(=]
[}

Mouvelle-Z&land
Bosnie et Herzégovin

2.2 Fonctions exponentielles

2.2.1 Fonction exponentielle de base e

Définition
La fonction exponentielle est la fonction réciproque de la fonction logarithme népérien :
Définition exp: R — RL
r +— exp(z) ou e® tel que In(e®) =eM® =2
s{exp(x)
Courbe :
représentative
2
J
9 8 7 6 5 -4 -3 -2 -1 0 1 2 3 4 :E
Parité
Dérivée

e est un nombre, appelé nombre d’Euler ou constante de Néper, tel que In(e) = 1.
+oo ]
Dvaute=e!'= Y — ~2,71828.

n=0 n!
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La fonction exponentielle fonctionne “comme les puissances” : e” est égal au nombre e a la puissance x.

Par exemple 2 = e x e x e.

Mais quand on vous a présenté les puissances au college, on ne les a définies que pour des nombres entiers.
La fonction exponentielle permet de généraliser cette notion aux nombres non entiers : grace a la fonction

exponentielle on peut maintenant par exemple définir e

Liens entre les fonctions exp et In

2,5

Les fonction exp et In sont réciproques 'une de I'autre :

Propriétés

Vr e R
V$€R+

In(e*) =

exp(lnz)) ==z

exp(x) ,

On retrouve les mémes propriétés que pour les puissances :

e¥ =

lim e
a—r—00

lim e
a—+o0o

Pour tous a,b € R :

x

x

2.2.2 Fonctions exponentielles généralisées

Définitions

R_)RJ’_

T ; ax:ewlna

La fonction exponentielle de base a (encore appelée “fonction a puissance z”) est définie par :

Par exemple la fonction exponentielle de base 10 est définie par :

50

R — R

r — 10*
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Propriétés

Ya>0:

o otV =a% x a¥

a
o g Y = aiy ° (aw)y = a%Y

2.2.3 A propos des fonctions exponentielles

On parle parfois de “Croissance exponentielle”, quand on a une augmentation tres rapide d’une grandeur.
En effet, le nombre e n’est pas énorme a priori : e ~ 2, 718.

Mais on a déja e'® ~ 22026, 5.

De nombreux phénomenes physiques varient en exponentielle. En fait, dés que la croissance d’une grandeur
est proportionnelle a cette grandeur elle méme il y a une variation exponentielle. Par exemple :

e Le nombre de noyaux radioactifs lors d’une désintégration radioactive ;

e Nombre des charges électriques lors de la décharge électrique d’un condensateur ;

Vitesse des réactions chimiques du premier ordre;

Evolution d'une population de bactéries dans un milieu de culture;

3 Fonctions hyperboliques

3.1 Activité d’introduction

PARTIE A

On appelle fonctions cosinus hyperbolique (notée ch) et sinus hyperboliqgue (notée sh) les fonctions définies
sur R respectivement par :

; et +e " et —e "
Pour tout réel x: chz = — et shz = ——

(On rencontre aussi les notations cosh et sinh pour ch et sh.)
1. (a) Etudiez la parité des fonctions ch et sh en rédigeant soigneusement.
Qu’en déduit-on pour les courbes de ces deux fonctions 7
(b) Déterminez la fonction ch + sh.

2. (a) Déterminez les limites éventuelles des fonctions ch et sh en +00 et en —oo.

—
=3
~

Montrez que les fonctions ch et sh sont dérivables sur R.
Déterminez les fonctions dérivées ch’ et sh’.

3. (a) Dressez les tableaux de variations des fonctions ch et sh.
(b) Soit la fonction f = ch — sh.
Etudiez le signe des valeurs prises par f et la limite éventuelle de f en +oo.
Que déduire de ces deux résultats pour les courbes des fonctions ch et sh ?

- =

(c) Tracez les courbes des deux fonctions ch et sh dans le repere (O HES AR

La courbe de la fonction ch est appelée chainette, essayez de rechercher (dictionnaire,...) en
quelles circonstances on rencontre cette courbe.

PARTIE B

De fagon analogue & la trigonométrie circulaire (avec les fonctions cos et sin), on peut développer une
trigonométrie hyperbolique (avec les fonctions ch et sh).
Dans toute cette partie, a et b sont deux réels quelconques.

1. Calculez cosh®a + sinh?a et cosh?a — sinh? a.
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2.

3.

Exprimez cha chb, sha shb, cha shb et sha chb en fonction de ch(a + b), ch(a — b), sh(a + b) et
sh(a — b).

Déduisez-en ch(a + b), ch(a — b), sh(a + b), sh(a — b), ch(2a) et sh(2a) en fonction de ch(a), ch(d),
sh(a) et sh(b).

On appelle fonction tangente hyperbolique (notée th ou tanh) la fonction définie sur R par :

Pour tout réel x: thax = —

(a) Justifiez que cette fonction est effectivement définie sur R et étudiez sa parité.

(b) Déterminez les limites éventuelles de la fonction th en 400 et en —oo.
Qu’en déduit-on ?

(¢) Etudiez la dérivabilité de th.
Déterminez la fonction th’, d’une part en fonction de ch, d’autre part en fonction de th.
Dressez le tableau de variations de la fonction th.
Montrez que les courbes des fonctions sh et th ont la méme tangente (que vous déterminerez)
en 0.
Tracez la courbe de la fonction th dans le méme repere (O ; f; ;) que précédemment.

(d) Exprimez th(a + b), th(a — b) et th(2a) en fonction de th(a) et th(b).

‘ Dans les questions 4, 5 et 6, indépendantes, les notations m et xq désignent des réels différents.

52

4.

(a) Soit m unréel de ] —1; 1].
A l’aide d’un corollaire du théoreme des valeurs intermédiaires, montrez avec soin que 1’équation
th(z) = m a une unique solution z( sur R.

e —1

e2r 41’

(b) Montrez que, pour tout réel z : th(z) =
Exprimez xg en fonction de m.

(a) Soit m un réel quelconque.
A l’aide d’un corollaire du théoréme des valeurs intermédiaires, montrez avec soin que I’équation
sh(z) = m a une unique solution zg sur R.

(b) Exprimez x( en fonction de m.

(a) Soit m un réel de [1; +oo.
A l’aide d’un corollaire du théoreme des valeurs intermédiaires, montrez avec soin que I’équation
ch(z) = m a une unique solution zq sur [0 ; +ool.

(b) Exprimez x( en fonction de m.

e’ =-1

Cette relation de Léonard FEuler, mathématicien
suisse et... borgne du XVIII eme siecle, fascine car
elle fait intervenir quatre constantes capitales : e, 1,
7 et lentier 1.
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3.2 Définitions

3.2.1 Fonction sinus hyperbolique

Définition :

sinh(z) /

Courbe ’ /
représentative 2 /,

Parité

Dérivée
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3.2.2 Fonction cosinus hyperbolique

Définition :

. cth(w)
Courbe
représentative

\ | /
\\\ 2 /
~___ -
O

Parité
Dérivée
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3.2.3 Fonction tangente hyperbolique

La fonction tangente hyperbolique, notée tanh ou th est définie par :

Dt tanh: R — ]—1;1]
éfinition : h
x +— thz)= sh(z) =

tanh(x)

Courbe
représentative ! | | 0

Parité

Dérivée

3.3 Relations de trigonométrie hyperbolique

Ce sont toutes les relations du formulaire.
Vous devez savoir qu’elles existent et étre capables de les retrouver grace aux définitions des fonctions
hyperboliques.
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3.4 Fonctions hyperboliques réciproques

3.4.1 Fonction réciproque de la fonction sinus hyperbolique

La fonction sinh est bijective sur R, donc on n’a pas de probléeme & définir sa fonction réciproque.
La fonction réciproque est appelée argument sinus hyperbolique et est notée Argsinh ou Argsh.

Définition :
Argsinh \:c)
2 /
7
! /
Courbe '
représentative S S S ' 7 S S S S |
T
Parité
Argsinh’: R — R
Dérivée 1
r o—
2+ 1
Forme -
logarithmique Argsh(z) = In(z + V22 + 1)

56
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3.4.2 Fonction réciproque de la fonction cosinus hyperbolique

La fonction cosh n’étant pas bijective sur R, pour définir sa fonction réciproque il faut se limiter a un
intervalle sur lequel elle D'est.

On se limite a la fonction cosh définie sur R, . La fonction réciproque de cette fonction est appelée argu-
ment cosinus hyperbolique et est notée Argcosh ou Argch.

Définition : Argeosh: [1,400[ — Ry
x +—— y=Argch(z) tel que ch(y) ==

.| Argcosh(z)

Courbe
représentative

Parité

Argcosh’ @ |1,+00] — Ry

Dérivée 1

A ===
x?—1

Forme Argch(z) = In(z + V22 — 1)

logarithmique

Attention a l'utilisation de la fonction Argcosh de la calculatrice!

Lorsque vous demandez & votre calculatrice de calculer Argcosh(z), elle vous affichera le résultat compris
dans 'intervalle [0, 4o00[, par définition de la fonction Argcosh. Il faut toujours bien garder en téte que —x
est également solution !

CHAPITRE 2. FONCTIONS USUELLES 57



3.4.3 Fonction réciproque de la fonction tangente hyperbolique

La fonction tanh est bijective sur R, donc on n’a pas de probleme a définir sa fonction réciproque. La fonction
réciproque est appelée argument tangente hyperbolique et est notée Argtanh ou Argth.

Définition :
Argtanh(x)
1 /’
Courbe //
représentative - T = o - ) o S ) !
/
/ — : ’
Parité
Argtanh’: |—1;1 — R
Dérivée 1
—_—
. 1— 22
Forme 1 1+«
logarithmique Argth(z) = 2 n (1 - a:)
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4 Exercices du chapitre 2

Exercice 2.1
Déterminer la période et I'ordonnée a 'origine des fonctions suivantes :

1. f1: x> sin(2x) 3. fg:[[:l—)%COS (%)
. ™
2. f221‘|—>8111(1'+§> 4. fy:x— tan (3 —7)

Exercice 2.2
Déterminer le domaine de définition et calculer les dérivées des fonctions suivantes :

1. f1:z—sin(3z —2) 5. fs:xs !
t—5 cos(v/x)
2. fo:tr tan | ——
3 z+1
sinx — cosx 6. y:x+— —
3. faiws — = sinz
sinx + cosx
4. fy 1y tan?(3y) 7.zt cos(2t2+7)
Exercice 2.3
Soit la fonction f : z +— arctan <1 > ol a est un nombre réel.
—ax

1. Donner le domaine de définition de f en précisant la condition sur a.

d
2. Montrer que d—(x) = arctan’(z).
x

Exercice 2.4 -
Soit la fonction f: x +— f(x) = 3 cos (2:r — Z)
1. Déterminer son domaine de définition Dy.
2. Déterminer sa période.
3. Déterminer l'ensemble des solutions de 'équation f(x) = 0 sur Dy puis sur 'intervalle [0 ; =].
4

. Quelle est la valeur maximale M prise par f(z)?
Déterminer I’ensemble des solutions de ’équation f(x) = M.

5. Quelle est la valeur minimale m prise par f(z)?
Déterminer 1’ensemble des solutions de I’équation f(x) = m.

6. Grace aux questions précédentes, tracer I'allure de la courbe représentative de cette fonction.

7. Déterminer la dérivée de f.

Exercice 2.5

Résoudre les équations suivantes (donner la solution exacte si possible, une solution approchée sinon) :

—_

sin(2x — ) = 0 sur R

2. tan(3z) —1=0sur R

3. cos(3z)+1=0sur [0; 27]
4. cosxz = 0,45 sur [0 ; 27|

5. sin(2z) = —0,5 sur [0 ; 27]
6. tan(2z) = 10 sur [—7 ; 7|
7. sinz = v/3cosz sur [0; 27|

Exercice 2.6
1. Soit la fonction x +— sin(x) — x.

(a) Dresser son tableau de variation.
(b) En déduire que pour tout x € Ry, sin(x) < z.

1‘2

2. Montrer que pour tout € R, cos(z) > 1 — 5
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Exercice 2.7
Le but de cet exercice est de justifier la conformation stable de la molécule d’éthane.

On appelle angle diédre angle 6 entre deux hydrogeénes appartenant aux deux carbones (voir schéma
ci-dessous).

A

H

H

L’énergie molaire de la molécule en fonction de ’angle diedre peut en premiere approximation étre modélisée

3
par la fonction E(6) = Ey {— sin (39 + ;) + 1] avec Fg = 1,5 kecal /mol.

1. Sur quel intervalle est-il intéressant d’étudier E(6)?
2. Tracer E(0) sur cet intervalle en faisant apparaitre les valeurs particulieres.

3. La conformation stable de la molécule est celle pour laquelle cette énergie est minimale.
Déterminer la ou les valeurs de 6 correspondant & cette conformation stable.
Dessiner la molécule dans cette conformation et justifier ’appellation de conformation décalée.

4. Déterminer la ou les valeurs de 6 correspondant a la conformation la moins stable.
Dessiner la molécule dans cette conformation et justifier 'appellation de conformation éclipsée.

Exercice 2.8
Déterminer le domaine de définition et les dérivées des fonctions suivantes :

1. f1:t—In(t?) 4 frizen (zl) 6. x:t+ cos(Int)
2. forz— In(z? —1) T+ 2 7. fr:t s log(t?)
1
3. f3-t'—>1n<t+2> 5. fs:y—In((y—1)?) 8. fs:x > logg(l — )

Exercice 2.9
Déterminer le domaine de définition et les dérivées des fonctions suivantes :

1. fi:zw e 4. fy:xs esin® 6. fe:t—Vd—e®
2. f22t|—>€t2_2 1 7. fr:x—5"
3. fyrz— (1+e%)3 5. f55$*_>1_~_e,3z 8. fg:trs 3t

Exercice 2.10
Soit ¢ = In(a?b?) — In(va®b?) + In(Vb2) + In(vVa7b3).

Exprimer ¢ en fonction de Ina et Inb.

Exercice 2.11
Résoudre les équations ou systemes d’équations suivants :

2
1.1n<<x+1>>:3
r—1

2. (=) (= =z "1 2°=5
(5) (3) -3 :

3. 2V® = (Va)® In <x2> =9

Remarque : 0° n’est pas défini.

ot

. log(z? — 1) = log(2x — 1) — log 2
L 92 _ 39:71/2 _ 39:+1/2 — 92z—1

(=}

oo
8
+
w

NS

|
N
I

Il

|
[t

1
4. loggx = 3 + logg (3z + 12) In(zy®) = ——-
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Exercice 2.12
1. Faire I’étude de la fonction fi(z) =z — In(1 + z).
1
2. Faire I’étude de la fonction fo(x) =In(l+z) —z + §x2
3. Etablir pour tout z > 0 ’encadrement suivant :

1
x—§x2<1n(l+x)<x

N

1
4. Montrer alors que V& > 0 on a xIn (1 + ) <1
T

1 xr
5. En déduire que (1 + ) <e.
T

Exercice 2.13

Soit un condensateur de capacité C'.

On le charge a une tension £ > 0, puis on le laisse se décharger dans un résistor de résistance R.
La tension a ses bornes en fonction du temps est alors donnée par :

u(t) = Be~ 7o

On rappelle que R et C sont des constantes positives.
1. Quelle est la tension at =07
2. La tension augmente-t-elle ou diminue-t-elle au cours du temps 7

3. Quelle est la valeur ug atteinte par la tension w si on laisse le condensateur se décharger pendant tres
longtemps 7

4. (a) Déterminer ’équation de la tangente & la courbe u(t) en t = 0.

(b) Déterminer en fonction de R et C' lexpression de 'instant 7 auquel cette tangente coupe la
courbe d’équation u = ug.

(¢) Donner lexpression de la durée t; nécessaire pour que le condenseur soit déchargé & 90%,
c’est-a-dire que la tension est égale & 10% de sa valeur initiale

Exercice 2.14
On chauffe une citerne initialement a la température de 20°C' par une résistance.
La température € est donnée en fonction du temps ¢ par la fonction 0(t) vérifiant I’équation :

de

avec @ = 2,088.1072°C.s L et b=2,32.10"* s~ L.
1. Déterminer « et 3 pour que la fonction 6(t) = ae™" + 3 soit solution.

2. Déterminer la durée de chauffe nécessaire pour obtenir une température de 80°C.

Exercice 2.15

Soit un nénuphar qui pousse sur un étang de 500 m2. Sa croissance est telle qu’il double de taille chaque
jour, et qu’il couvre la totalité de son étang en 100 jours.

1. Quelle est la taille du nénuphar au 99¢ jour ? Au 98¢ jour?

2. Exprimer la taille T'(J) du nénuphar au jour J.

Exercice 2.16
Calculer les limites suivantes :

1 lim 2Sin() A lim @)

z—0+ 32 z—+00 322 + 1 — 6
. e’ In(x)

2. 1 - im ——~

x—1>1—5{1003$2+x76 d. il—qllaj—l
3z _

3 Jim x26 6. lim 1 — cos(3x)

z—+o00 % + 1 z—0 T
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in? . In(l+22
. xlggo slnx(x) 3. ilﬂ% (4:62 )

Exercice 2.17

Déterminer le domaine de définition et la dérivée de chacune des fonctions suivantes :
1. f1:tr~ cosh(2t — 1)

2. : . : 2
fara— tanh 2 5. f5 : @ — cosh(z?)
3. f3:y— /sinh(2y)

4. fy: 2~ In(sinhx)

6. :m — tanh(v/3m —7)

Exercice 2.18
Soient x > 1 et y > 0 tels que x = cosh(y).

1. Montrer que 2z = e¥ + e Y et en déduire que e?¥ — 2ze¥ + 1 = 0.

2. On pose Y = e¥.

(a) Déterminer I’équation du seconde degré a laquelle obéit Y.

2 2v/x2 -1
(b) Monter que cette équation a & priori deux solutions Y7 = i T+ vVrZ—1et
2z —2va? -1
5 -

(c) Vérifier que Y7 > 1.

(d) En utilisant I'identité remarquable (z + va? — 1)(z —

pas étre solution.

3. En déduire que l'on peut écrire : Argch(z) = In(z + Va2 — 1).
C’est ’écriture logarithmique de la fonction argument cosinus hyperbolique.

Y, = —Vaz? —1.

22 — 1) = 1, montrer que Y3 ne peut

Exercice corrigé 2.1 o
Soit la fonction ¢ : z — g(x) = 3sin (3(1‘ — 2)) — 5.

1. Déterminer la période, la valeur maximale et la valeur minimale de g(z).

2. Tracer la courbe représentative de g en faisant apparaitre les valeurs particulieres.

. T T 11 3 1 11 23 35
2. e La valeur max est atteinte pour —(z —2) = — +2kn = o = — + 3k = ... ; ; — Do
3 2 A 4 A 4 4
: 1 - - '27r< ) T Lo 5 19 7 5 17 29
e La valeur min est atteinte pour —(x — 2) = —— T=—x=-+4+3k= —— == = = — e
! 3 / 2 1 1 14 4
N . 2w 3 1 7T
e La valeur moyenne —5 est atteinte pour —(x —2) =kn = a2 =2+ -k=...; —1; = ; 2; —; 5;
3 2 2 2
Ce qui donne :
4-g(x)
0
2 o 2 1 s 3 10 )
xr

9maa
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Exercice corrigé 2.2
Faire I’étude des fonctions suivantes :

1. fi x> e2®t3
2. fg:ﬂ?l—}eé
3. f3:x|—>e””3_””

20+3
x s e2et3

1. f1:

x —00 —+oo
fl(x) = 2e27F3 +
“+o00
/
— 00
x —00 0 +00
T
f'(z) = —Z5ew - | -
1 | +o00
f hN \ N
0 | 1
x ‘ —00 — ﬁ % —+o0
fl(z) = (322 — 1)e* @ + 0 - 0 +
¢ 3v3 400
f / N o
0 e 3V3

Exercice corrigé 2.3
On se trouve dans une ville de 10 000 habitants.
A 8h du matin, 100 personnes apprennent une nouvelle, et commencent a la répandre.
On note dés lors y(t) (0 < y(¢) < 1) la proportion de la population connaissant cette nouvelle a 'instant ¢,
Porigine des temps étant prise & 8h (¢t = 0 a 8h).

d
On propose une modélisation de la propagation de la rumeur ou la vitesse de propagation d—z est propor-

tionnelle a la fois a la proportion de la population qui connait la nouvelle et & la proportion de la population
qui ne la connait pas, le coefficient de proportionnalité étant de 1,15 AL,

d
1. Justifier que y(t) est solution de 'équation différentielle d—i = 1,15y(t) — 1,15(y(t))? et donner la

valeur de y(0).
2. On pose y(t) =

2(t)

d
Montrer que la fonction z obéit & I’équation différentielle d—j =1,15(1 — 2(¢)).

3. Montrer que Vk € R la fonction z(t) = 1+ ke™115¢ est solution de I’équation précédente et en déduire
Pexpression de y(t) (utiliser la condition initiale pour trouver k).

4. Toute la population finira-t-elle par étre au courant ?

5. Combien de personnes connaissent la nouvelle a midi?

6. Calculer ’heure & laquelle 99 % de la population sera au courant.

1. e La proportion de la population au courant est y(t).

La proportion de la population qui n’est pas au courant est 1 — y(t).
dy, dy, .
On a donec <4 = 1,15 x y(t) x (1 —y(t)) = Y, 15y(t) — 1, 15(y(t))>
dt dt
(0) 100, (t)=10""2
o = g =
v 10000 Y
1
2. o y(t) = —
R0
dy d 1 dz 1
¢ - =——=_-_"- -
dt dt z(t) dt (z(t))?
On remplace dans I’équation différentielle précédente :
dy ~ 5
— =1,15y(t) — 1,15(y(¢))"
dt ’
dz 1 ) 1 1
- =1,15 - 1,15 .
. dt (2(t))? z(t) (2(1))?
dz
— = —1,15z(t 1,15
dit 2(8) 4 ’
— d= =1,15(1 z(t))

a0
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3. o Soit z(t) = 14+ ke 115, k€ R.
dz 5
On calcule —(t) = —1, 15ke™ 1% = —1,15(2(¢) — 1) = 1, 15(1 — z(¢)).
dt
Cette fonction est donc bien solution de ’équation précédente.
1

La constante k peut étre déterminée grace a la condition initiale :

e On en déduit y(t) =

1 1
=— =k=99

y(0) =102 = — =
y(0) 1+ 100

1

Donc finalement | y(t) = T3 996 Tiot

4. tlim y(t) = 1 donc toute la population finira par étre au courant si ’on attend suffisamment longtemps.
— 00

A midi, t =4 h.
1
y(4) = —————— = 0, 5 donc la moitié de la population est courant, soit 5 000 personnes.
1+99671‘1‘)X4 —_—

6. Soit T I'instant auquel 99 % de la population sera au courant :

(%28

y(T) = 0,99
1

— —— =0,99
1+ 99¢— 1,157
— 1+995171’15T: ;
L 0.9
— e LIST
992
— —1,157T = —21n99
21n 99
. =
1,15
L’application numérique donne T' = 7,99h ~ 8 h.
Donc 99 % de la population sera au courant a 15h.
Exercice corrigé 2.4
Faire I’étude des fonctions suivantes :
1. g: 2z~ cosh(2z — 1)
1
%0 fitem —
sinh(z2 — 1)
1. g: 2z~ cosh(2z — 1) :
T —o00 fracl2 +oo
g'(z) = 2sinh(2z — 1) — 0 +
+o0 —+o0
g pY
1
2 f . — 1 .
o sinh(z2 — 1) ~
x —00 -1 0 1 “+oo
2z cosh(z® — 1)
) — — — 0 — —
F@ sinh?(z2 — 1) - I - I
+o00 i sinh(—1) | 4oo
! / | / N Il RN
0 I —o0 —00 i 0
Exercice corrigé 2.5
Montrer que Vn € R, on a (ch(z) + sh(z))™ = ch(nz) 4 sh(nz).
On a d’une part :
e’ +e ” e® —e @ \"
(ch(z) + sh(z))" = + - >
2 2
_ ey
Et d’autre part :
enT o gmnE  gna _ o—nw
ch(nz) + sh(nz) = +
ne 2 2
en®

Donc on a bien | (ch(z) + sh(z))™ = ch(nz) + sh(nz) |
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Exercice corrigé 2.6

On montre que sur R4 on peut mettre les fonctions argument du cosinus hyperbolique et argument du sinus
hyperbolique sous la forme Argchx = In(z + v22 — 1) et Argshz = In(z + V22 + 1).

Démontrer les expressions des dérivées de ces deux fonction arguments hyperboliques.

e Pour la fonction Argch :
Argchz = In(z + V22 — 1)
1 4 2z

= Argch’'z = #
4+ Va2 -1
V2 —1 1
= Argch’z = = ! - i -
Va2 — 1(xz + Va2 — 1)
1

’
== Argch’'z = ————
2 — 1

e Pour la fonction Argsh :

Argshz = In(z + Va2 + 1)

-
2z

1+ ——
2vz? 4+ 1
= Argsh’z = —2¥Y T
- z+Vz2 £ 1
=  Argsh’ it
Argsh'z = : 5
8 NCESTCERCESS
, 1
== Argsh's = ———
z2 4+ 1
Exercice corrigé 2.7
Faire I’étude complete des fonctions suivantes :
1. f:x— y/cos(z) sur lintervalle [—, 7].
1 .
2. 910 ——— sur lintervalle [—, 7].
sin®(z) — 1
1. f:a+— y/cos(x) en se limitant a Dintervalle [—7, 7].
w ™
0 0 -
2 2
() sin n 0
r) = — —
2y/cos T
1
f / N
0 0
1 ..
2. grax = ——— sur Dintervalle [—, 7].
sin?(z) — 1
™ ™
T U — 0 — us
l [
() 2cosxsinx 0 + 0 0 n
()= ———""— - _
g4 (sin2 z — 1)2
l [
1 [ 1 [ 1
g N l S N I
—o0 I —o0 —o0 I —o0

Exercice corrigé 2.8

Lorsque I'on charge un condensateur initialement déchargé avec une tension continue F, la tension aux

bornes du condensateur évolue au cours du temps selon la loi u(t) = E [1 - e*ﬂ avec 7 = RC ol R est la

résistance interne du condensateur et C' sa capacité.
1. Calculer u(0).

. Quelle est la valeur maximale atteinte par u(t) ? Quand cette valeur est-elle atteinte ?

. Tracer l'allure de u(t) et faire apparaitre les éventuelles asymptotes.

2
3
4. Déterminer I’équation de la tangente & la courbe wu(t) & Uinstant ¢ = 0 et la tracer sur le schéma.
5

. Déterminer le temps auquel la tangente coupe I'asymptote.

CHAPITRE 2. FONCTIONS USUELLES

65



6. On consideére que le condensateur est chargé lorsque la tension a ses bornes a atteint 90 % de sa valeur
maximale.
Déterminer en fonction de 7 la durée ty de charge du condensateur.

2. La fonction u(t) est strictement croissante, donc la valeur maximale est atteinte quand ¢ tend vers +oo.

Umas = Tiizx u(t) =
t— + oo

T xr

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3.

4. u(0) =0 et u'(0) = — donc la tangente & 'origine a pour équation
T

Q
Il

o

E
On cherche T tel que —T = E =
T

C’est une caractéristique de la constante de temps.

6. u(tp) =0,9FE — E (1 — fff“’/") =0,9E = ¢ /7T = 0,1 = |tp = — In(0, 1)1 ~ 2,37
Exercice corrigé 2.9
Résoudre dans R :
1. eot2 = ¢’ 3. el < e
2. In(z +2) + In(z — 2) = In(z? — 4) 4. In(1—-22) +In(z + 1) > In(22% + 2 + 3)
1. S={-1; 2} 3. S =R\ {1}
1
2. §=]2; +o0f 4. S:{,E}

Exercice corrigé 2.10
Déterminer les ensembles de définition des fonctions suivantes :

1. f(2)=vV1+4+Inx 2. g(x) = Ve —4

1. Dy =[et; +oof 2. Dy =[n2; +oof

Exercice corrigé 2.11
A Daide du formulaire, mettre les expressions suivantes sous la forme A cos(z — ¢) :
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1. cos(z) + sin(x)
2. cos(x) — v/3sin(x)

1. Ona:

cos(z) + sin(z) = cos(z) + cos <:1‘ —
$+‘17u/2) (:rfac+r/2>
= 2cos cos

-sem(e- 7)o (1)

= 2cos <;l: — 7>
4 2

3

'

Donc | cos(z) + sin(z) = V2 cos (;I: - %)

2. Ona:
1 3
cos(z) — V3sin(z) =2 5 o8 — g sin r:|

2 oo (5 cone v (-5 o]
=2|cos| —— Jcosz+sin | —— |sinz
3 3

Donc | cos(x) — V3sin(z) = 2 cos <J1; — %)

Exercice corrigé 2.122
Soit y = a® avec a = e et b= — In(z'/*).

Exprimer tres simplement y en fonction de x.

Exercice corrigé 2.13
Soient a et a deux constantes réelles non nulles.
Soit le systeme suivant, de variables x et y :

{ ch(z) + ch(y) = 2ach(a)
sh(z) + sh(y) = 2ash(a)

On cherche a résoudre ce systeme, c’est-a-dire exprimer = et y en fonction de a et a.
1

| . 2ac 0 — v

En déduire ’expression de y en fonction de a et a.

1. Montrer que e = 2ae® — e¥ et e” =

2. Donner 'expression de .

1. e On part du systeme :
ch(z) + ch(y) = 2ach(a) (L1) e’ 4+ e¥ = 2ae” (L1 + L) e’ = 2ae” —e¥
sh(z) + sh(y) = 2ash(a) (L2) e T 4+e ¥ =2ae"" (Ly— Ls) e " =2ae * —e Y
. - 1 . x . « y 1
Comme e~ * = — on a bien | e” =2ae” —¢/ = ————— |
er 2ae”% —e” Y
x @ 9 1 2 —aty .
e ¥ =2qe*—eY= ————— = 4a“+1—2aqe Y —2ae“"Y =1= cosh(aa—y sh(a)
2ae % — e~ Y
2. La méthode est la méme. |
En partant du deuxiéme systéme ci-dessus on a eV = 2ae® — e” = T = 4a? +1 — 2ae" T — 207" = 1 =

2ae~% —e

cosh(a — ) = 2a = | * = a — Argch(a)
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1 Définition d’une intégrale

1.1 Intégrale et aire sous la courbe

Soit une fonction f continue sur Uintervalle [a ; b] et C sa courbe représentative dans le repere (O,
b
L’intégrale de f entre a et b est notée / f(¢)dt et est définie comme suit :
a

e Si f est positive sur [a ; b], intégrale de f entre a et b est Iaire délimitée par C et les droites verticales
d’équations xr =aet z =04 :

| |

/a " fa)de = A

\_/
v

\ /

CHAPITRE 3. INTEGRATION




e Si f est négative sur [a ; b], Uintégrale de f entre a et b est Popposé de aire précédente :

f(z)
b
/ f(x)de=—-A

e Si f change de signe sur [a ; ], 'intégrale de f entre a et b est la somme algébrique des aires comptées
positivement et des aires comptées négativement :

f@ |

b
f(CB)dJS = Al -|— A3 — A2 — A4

aQ

Exemple 3.1
Soit la fonction constante f : x +— k avec k = cste définie sur un intervalle I.

b
AlorsVa,be I / ft)ydt =k x (b—a)

Remarque 3.1
La valeur de ’intégrale n’est pas nécessairement en m? !'! L'unité dépend des unités de x et de f(x)...
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1.2 Sommes de Darboux

Soit une fonction f, et dont la représentation graphique serait la suivante :

f(x)

Al

~ X

On divise l'intervalle [a, b] en n intervalles [z;, ;1] avec :
i€{0,1,..n—1}
o =a

T, =0b

On appelle un tel découpage une subdivision de [a,b] et on la note o = [a, z1, T2, ..., Tp_1, b].
f(x)

e

Remarque 3.2
o [l existe une infinité de subdivisions possibles pour un méme intervalle ;

o Les intervalles [x;,x;11] n'ont pas nécessairement la méme taille.

Sur un intervalle [z;, z;+1] on note m; = f(x;) (valeur de la fonction “4 gauche”) et M; = f(x;y1) (valeur
de la fonction “a droite”) (voir schéma précédent).
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La subdivision s’apparente & remplacer sur chaque intervalle [z;,z;41] la fonction par une fonction en
escalier :

” .

Soit par la valeur “a gauche Soit par valeur “a droite” :

f(xl <r< Jii_;,_l) =1m; f(ﬂ?, <r < $i+1) = M;
f(x) f(x)

So = Y (Tiy1 — m5) X my Sy = zn:(xiJrl —x;) X M;
i=0 i=0
f(x) f(x)
- [
[ H = ¢ X
a b a b

Les sommes de Darboux sont les sommes des aires des rectangles correspondant a chaque marche.

1.3 Intégrale de Riemann

Si dans les sommes de Darboux on fait tendre n vers l'infini, la fonction en escalier précédente se confond
avec la fonction f et les sommes de Darboux se rejoignent et se confondent avec 'aire sous la courbe.
La fonction f est dite intégrable au sens de Riemann si :

lim s, = lim S,
n—oo n—oo

b
et alors on appelle intégrale de la fonction f entre a et b cette limite commune, et on la note / f(t)de:
a

b
/ f®)dt = lim s, = lim S,

n— oo n—oo

Les fonctions monotones ou continues sur [a ; b] sont toutes intégrables au sens de Riemann.
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2 Primitive d’une fonction

2.1 Définition
Soit une fonction f continue sur un intervalle I contenant a.
xr
On montre que Vz € I, la fonction F : x — / f(t) dt est dérivable et que sa dérivée est f.

a
On dit alors que F' est la primitive de f qui s’annule en a.

Toutes les fonctions F' définies sur I et dont la dérivée est f sont des primitives de f sur I :

dF
F' est une primitive de f <= d—(x) = f(z)
x
Comme la dérivée d’une constante est nulle, les primitives sont définies a une constante pres, c’est-a-dire
que si F': & — F(x) est une primitive de f, alors pour toute constante k, la fonction G : x — F(x) + k est
également une primitive.
Donc si f admet une primitive sur I, elle admet en fait une infinité de primitives sur I.

x
On note parfois les primitives de f avec la notation / f)de.

La notation différentielle est tres pratique dans la notion de primitive :

/zf(t)dtz /zdF = F(x) + cste

Exemple 3.2 x
Les primitives de la fonction f : x — 2z peuvent étre notées F(x) = / 2t dt = 2° + cste.

2.2 Détermination des primitives d’une fonction

Pour déterminer la primitive d’une fonction f, on doit trouver une fonction dont la dérivée est f.

Exemple 3.3 1
1. Les primitives de la fonction fi : x + 2x + — sont les fonctions Fy définies par :
x

. 1
Fliz—a?—=+k ; k=cstecR

2. On cherche la primitive de la fonction fo : x — 422 qui s’annule en 1.
Les primitives de fo sont toutes les fonctions Fo définies par :

4 .
F2:170—>§1:‘3+k‘ i k=csteeR
1l n’y en a qu’une seule qui s’annule en 1. Pour que Fy s’annule en 1 il faut
4 4
B(1)=0=s+k=0=k=7

Donc la primitive de fo qui s’annule en 1 est la fonction :
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2.2.1 Primitives des fonctions usuelles

f(z) ‘ /lf(t)dt Intervalle
1 n41 R si n>0
(z—a)” ;a€R; neR\{-1} n+l($7a)’ + cste
R* si n< -1
1
zfa;GER In(|z — a|) + cste R\ {a}
1
cos(az); a € R” —sin(a x) + cste R
a
1
sin(az) ; a € R* ——cos(ax) + cste R
a
1
tan(ax) ; a € R* ——In|cos(ax)| + cste R\{g-ﬁ-kﬂr,kel}
a
1 1
cotan(a x) = 7tan(a 2 ; a € R* - In|sin(az)| + cste R\ {km, k € Z}
9 _ 1 ) . 1 ) T
1+ tan (az)fm,aeR gtdn(aw)+cste R\ §+k7r,k62
1 1
m ; a €R" 7Ecotan(a x) + cste R\ {km,k € Z}
1
e’®; a€eR” —e®® 4 cste R
a
In(az); a € R" z(In(az) — 1) = cste R
1 1 T
——— ; a €R” — arctan ( — ) + cste R
2 4 a2 a a
B T —a
m;aGR %ln et a + cste = argth(z) + cste R\ va
1
cosh(az); a € R" — sinh(a z) + cste R
a
1
sinh(az) ; a € R* — cosh(az) + cste R
a
1
tanh(az) ; a € R™ — In (cosh(a x)) + cste R
a
1
7003}1(9:) 2cotan (e”) + cste R
! In [tanh = | 4 cst R*
_— n [tanh —| 4 cste
sinh(z) 2
1
cotanh(z) = m In [sinh 2| 4 cste R
1
1 —tanh?(z) = ——— tanh(z) + cste R
cosh?(z)
1
W —cotanh(z) + cste R*
1
ﬁ ;a€R argsinh (%) + cste = In(z + Vz2 + a2?) = cste R
a? +x
1
———= 3 a€R arcsin (ﬁ) + cste ]—a; al
a? —x a
argcos z + este = In(xz + V2 — a2?) + cste siz>|a
! " el
e i G €R al ]—c0 5 —lal[Ullal ; +ool
z @ —argsinh ﬁ) + cste = In|z + V22 — a?| + cste  sixz < —|al
a
o) b a
I art — 3 abpgER | , b- 2 X+2
(22 + pz + q) 511[1\X2 +pX +q| + arctan 2 + cste R
2
p? —4g <0
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2.2.2 Opérations sur les primitives

Soient deux fonctions u et v et leurs dérivées u’ et v’ :

f(x) /z f(t)dt Remarques / exemple
u/(z) + v’ () u(z) + v(z)
1) [ rwar
/(@) x [u(@)]™ ; n € R\ {~1} @) - este 2a(a? + 5)2 %w +5)°
cosx . o .1 1
g CcosesinT e | —sinThw = ———
UI(z)‘neR 1 1 s - -
H +\ {1} —— ———— +cste C’est un cas particulier de la primitive précédente
[u(z)]™ n—1 [u(z)]" pour n < 0
f(@) [ rwar
, sinx “n| |
w(=) In |u(x)| + cste cos x nlcos®
u(z)
dfrac2e —1z? + z | In|z? + z|
r@ | [ rwa
u' (@) x (v ou)(z) = ' (2) x v'(u(z)) | voulx) = v(u(x)) 2ze®” e

e () | (5)
——cos | — sin [ —
2 T T

v'(az); a € R*

1
— X v(az)
a

Cas particulier du cas précédent avec u(z) = ax

Attention, la primitive d’un produit de fonction n’est pas le produit des primitives de chaque fonction !

3 Calcul d’une intégrale a partir des primitives

Soit une fonction f continue sur un intervalle I contenant a et b.
Soit F' une des ses primitives.
Alors l'intégrale de f entre a et b se calcule grace a la relation :

/fmw=wm1

= F(b) — F(a)

Remarque 3.3

Comme on finit par faire une différence, le choix de la primitive (c’est-a-dire le choiz du terme constant)
n’a pas d’importance.

Si la fonction f ne possede pas de primitives simples & calculer ou pas de primitive du tout, il faudra utiliser
des méthodes de résolution numérique. Différents algorithmes existent, dont plusieurs utilisent la définition
de l'intégrale et son interprétation comme la “somme des rectangles de la fonction en escalier”.

Exemple 3.4; 1 1
o || = 22 do = {‘173}
0 0
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4 Propriétés des intégrales

Soient deux fonctions f et g définies et continues sur I'intervalle [a, b].

1 Linéarité :

b b b
VA € R / (Af(z) + pg(x)) dz = )\/ F(z)dz + u/ g(z) da

2 Relation de Chasles :

Ve € [a, b] /abf(x)das:/:f(x)dx—k/cbf(x)dx

/abf(x)dx:—/baf(x)da:

3 Inversion des bornes :

4 Relation d’ordre :

b b
flx) <g(x) V€ la,b = / f(z)dx < / g(z)dx

b
m< f(x) <M Yz € [a,b] = m<ﬁ/ flz)de < M

5 Signe de l’intégrale des fonctions positive (resp. négatives) :
b
f(x) >0 Vzelalb] = / f(z)dz >0
a
b
f@) <0 Vaelal = / F@)dz <0
b
f(z)=0 Vz € la,b = / flz)dz =0

6 Majoration de l’intégrale :

< [ @nas

/abf(x)dx

7 Valeur moyenne : La valeur moyenne de la fonction f sur l'intervalle [a, b] est le nombre :

b
f=i= |t

8 Commutation de l’intégrale :
e Intégration et puissance ne commutent jamais;
e Intégration et valeur absolue ne commutent pas toujours;

e A priori intégration et dérivation ne commutent pas.
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5 Intégration par parties

5.1 Relation de I'IPP

Soient deux fonctions u et v définies, continues et dérivables sur 'intervalle [a, b].

b b
/ (uwv)'(z) dz = / (' (x)v(x) + u(x)v'(z)) do
b b b
& (w) (x)dz = [ 4 (z)v(z)dz + [ u(z)v'(z)dz
a I J
& [u(x)v(a:)]z = / o (x)v(z) do + / u(z)v'(z) da

b

Donc si 'on reconnait sous 'intégrale le produit d’une fonction et de la dérivée d’une autre fonction, on
peut utiliser cette derniére relation pour arriver a une intégrale plus simple a calculer.

5.2 Méthode

Soit & calculer une intégrale dans laquelle on reconnait le produit d’une fonction u(z) et de la dérivée d’une
autre fonction v'(z) :

I= /abu(ac) x v/ (z) da

On place sur une méme ligne les fonctions u(z) et v'(x), puis on déterminer la dérivée u'(x) et la primitive
v(z) :

Sous [
u(z) = V'(z) =
4 {
u'(x) = .. v(z) =
Sous J

On applique ensuite la relation précédente :

b b
/ u(z)' (z) dz = [u(z)v(z)]) - / o' (z)v(z) d

I J

Exemple 3.5 o
On veut calculer I = xsin(z) de.

Jo
On reconnait sous l'intégrale le produit de x par sinz. On pose :

u(x) == v'(z) = sinz
\ 1
u'(z) =1 v(x) = —cosx
s
Donc I = [~z cosz]; — / —cos(z) de = [~z cosz|) — [—sinz]) =7
0

5.3 Choix des fonctions

La principale difficulté de l'intégration par partie est qu’il faut choisir dans le produit de fonction sous
I'intégrale quelle sera la fonction u et quelle sera la fonction v’.

Ce choix requiert un peu d’intuition. Il faut en fait que la nouvelle intégrale qui apparait J = / o (x)v(x) de

soit plus simple & calculer que 'intégrale initiale I = / u(z)v' (r) dx.
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Exemple 3.6
Pour lintégrale de ’exemple précédent, si l'on fait l'autre choix, cela donne :

u(x) =sinz V() ==
22
u'(x) = cosx v(x) 5

./L’Q s " TT ./l/’2
Alors I = |—sinx| — / — cosz dx.
2 o Jo

On ne sait toujours pas calculer cette deuxieme intégrale, et elle est méme plus complexe que la premiére.
Ce n’est donc pas le bon choiz.

Il existe un moyen mnémotechnique pour se souvenir de l'ordre préférentielle pour la fonction & dériver
(c’est-a-dire la fonction u dans la relation générale) : la méthode “ALPES” :

A L P E S

arccos In  Polynéomes exp sin

arcsin log cos

arctan  log, tan
Argcoch cosh
Argsinh sinh
Argtanh tanh

On choisit en priorité pour la fonction a dériver u celle qui est la plus a gauche dans ce tableau.
Par exemple entre une fonction trigonométrique et un logarithme, on choisira le logarithme.

Exemple 3.7 2
Soit a calculer I = / tet dt.
1

On a le choiz entre un polynéme (t) et une exponentielle (e).
On choisit donc u(t) =t et v'(t) = et :
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6

6.1

Nous nous sommes jusqu’ici limités aux calculs d’intégrales du type /

Intégrales généralisées

Introduction
b

a

est continue sur [a, b].

Ces

intégrales sont appelées intégrales définies.

Les intégrales qui ne respectent pas cette condition sont appelées intégrales généralisées.

I1 nous faut considérer les trois cas suivants :

6.2

e La fonction a intégrer n’est pas définie sur I'une des bornes d’intégration :

b
/f(x)dx avec a¢D ou b¢D

Exemple 3.8
fghlx dx : la fonction In n’est pas définie en 0.
Jo

e La fonction a intégrer n’est pas définie en un ou plusieurs points ¢; de 'intervalle d’intégration :

b
/f(x)dx avec Jce€la;b] et c¢D

1
22— dx : la fonction x — — n’est pas définie en 0.
x x

Temple 3.9

e On integre jusqu’a une borne infinie :

/aoo f(z)dz ou /boo F(z)da

Convergence et divergence d’une intégrale

e Soit une fonction f définie et continue sur [a, b] avec éventuellement b = +o0.

lim / " r)ar

Dans le cas contraire, on dit que 'intégrale diverge.

< +00.

b
On dit que l'intégrale / f(z) dz converge si

e Soit une fonction f définie et continue sur |a, b] avec éventuellement a = —oo.

lim /b f)de

T—ra

< Ho00.

b
On dit que l'intégrale / f(z)dx converge si
a

Dans le cas contraire, on dit que I'intégrale diverge.

e Soit une fonction f définie et continue sur |a, b[ avec éventuellement a = —oo ou b = oo.
La définition de la convergence découle des deux conditions suivantes :

b c b
On dit que l'intégrale / f(z) dx converge si Ve €]a, b[ les deux intégrales / f(z)dx et / f(z

convergent.

Dans le cas contraire, on dit que l'intégrale diverge.

CHAPITRE 3. INTEGRATION

f(t)dt dans le cas ou la fonction f

) dx

79



6.3 Définition de l’intégrale généralisée

On considére une intégrale non définie. On peut généraliser la notion d’intégrale sur tout intervalle, &
condition que l'intégrale converge, et alors l'intégrale est égale a la limite considérée :

Exemple 3.10 1 a q 11¢ 1
o [ = dx lim —dxr = lim [——] = lim <_E + 1) =1
1

a——+00 1 12 a——+00 x 1 a—+00

0 0
o [H = / e“dr = lim e“dr = lim [e":]?l = lim (I1-¢*)=1
— 00 a—r—0o0 a a—r—0o0 a——0o0

L’intégration par partie que 'on a vue pour les intégrales définies peut également étre utilisée, mais il faut
prendre des précautions pour que tous les nouveaux termes introduits soient définis.
Soit par exemple une fonction définie sur [a, b[. L’intégration par partie nous dit que :

b b
/ f(x)g(x) dz = [f(2)g(2)]; — / f(x)g'(x) dz

/ Falgte)d = tig (17000 ~ [ 70/ at) =t 700z ~ i [ 7019'0)

On a donc :

a condition bien str que ces deux limites existent !
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7 Exercices du chapitre 3

Exercice 3.1
Déterminer les primitives des fonctions suivantes :

L firz—at4+3z-1 5. fs x> sin(2z — 1) 10. fio : z — tanh(3z)
2z +1
P —ba?+1 : . 527 +1
2.f2:a:»—>% 6. fe-waerz 11. fi1:x = ze
L 1
T friwes o= 12. frg:a e ———
3. fs: xHL 2+ 7 Sz 2244
-1 8. fs : x> xcosh(z?) 9
4. fyiax e 9. fo: x> 2sinh(z) cosh(z) 3. fis:om o

Exercice 3.2 1
1. Tracer sur un méme graphique les courbes des fonctions f; = = + 22, fy =  — — et les droites
x

1
d’équations x = 3 et x = 2.
2. Calculer l'aire de la surface délimitée par ces quatre courbes et ’axe des abscisses.

Exercice 3.3
Calculer les intégrales suivantes :

3 4 1
1. 11:/ (2% + 3z — 1)dx 8. 18:/
0

R |
L2216
23 + 2 — 5t + 1

2. 12*/1 ; dt 9. 19:/ (1+ 2sinz)? dz
4 0
2t —1
3[3:/ t2—tdt 41_\/E
2 10. I1p = 7 dt
4. 1 :/ (cos(2t) + sint) dt !
0 2
77 11. I11 = t|dt
5. Iy :/ (sin(4x) — 5cosx) dz H /_1| |
EE In2 1
2
6. 16:/_lsinx0053xdx 12. 112:/0 1+e® d
2 1 s
7. I = / e de 13. I3 = / z%e™ da
0 0

Exercice 3.4
1. (a) Exprimer sin(x) cos(3z) en fonction de sin(4x) et sin(2z).

™

(b) Calculer /2 sin(x) cos(3z)dz.
0

s
2

2. Calculer/ cos(2z) cos(4x)dx.
0

Exercice 3.5

int s t
On pose A = / L,dt et B = / cos
0

cost —sint cost —sint
1. Calculer A+ B et A— B.
2. En déduire A et B.

Exercice 3.6
Calculer les intégrales suivantes en utilisant une intégration par partie :

1
1. 11:/ (2t — 4)etdt 3. 13_/ t2
0 1
T 2
1
2. 12:/ 2t sin tdt / 224z
0 1 X
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s 3 eIHSx
5. 1 :/ €2 cos zdx 7. T :/ —d
o e

6. Ig =/ e” cos zdx
0

Exercice 3.7
Déterminer les primitives des fonctions suivantes :

tanx 1
1. fi:x— 4 frix = ————5—
cos z+zln“z
2. fo:x — arcsinzx
) arctan x ) )
3. f3~$—>x27+1 5. f5:x — sin® xcos®

Exercice 3.8
Calculer les intégrales suivantes a 1’aide d’un changement de variable :

4

1_

1. I = / \/de avec le changement de variable u = /x.
1 VT

2 T
2. Iy = / T —dz, en trouvant vous meéme le changement de variable!
1 e
1
3. Iz = / v —22 + 1dz avec le changement de variable z = sin u.
0
¢In"x . .
4. Iy = dx pour tout entier n, avec le changement de variable u = Inz.
1 X

Exercice 3.9
Pour chacune des intégrales suivantes, donner le domaine de définition de la fonction sous l'intégrale, et la
calculer si possible.

400 1 1
1. 11:/ edx 4. I4:/ —dzx 7. 17:/ Inzdx
0 0 VT 0
1

Foo 1 S
2. I, :/ e *dx 5. Iy z/ —dz 8. T :/ cos T dz
0 o T s 0o Vsinzx

+o0 1 +o0o 1
3. I, = —d 6.1:/ —dz
3 /0 m2+1£ 6 . 2211

Exercice 3.10
Soit & calculer 'intégrale double suivante, ol x et y sont deux variables indépendantes :

1 2
I = / / zy?dzdy
=0 Jy=1

Comme ces deux variables sont indépendantes, on commence par calculer 'intégrale selon y en considérant
x constant :

Puis on integre le résultat selon x :

En prenant exemple sur le cas précédent, calculer :
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Bl
1. J= / / cos x siny dydz
=0 0

2. K:/ / yIlnzx dedy
z=1 Jy=0

Exercice 3.11
(Cet exercice est inspiré d’un probléme d’OSF (Semestre 2).

w

On considere un filtre conique d’angle 6.
On note R la résistance du support de filtration, p la masse volumique de I’eau et u sa viscosité cinématique.

Les valeurs numériques sont les suivantes :

e R=1,10.10"0mn""! e ;1 =1,00.10"%Pa.s
e p=1,00.10% kg.m =3 e §=80°

Le volume est donné par :

Le débit volumique est donné par :

V. 7oy (0 s
e HR51n<2)h(t) (2)

1. Différencier la relation (1) afin d’exprimer dV en fonction de dh.
2. En utilisant les relations précédentes, exprimer dt en fonction de dh.

3. La hauteur initiale d’eau étant de 0,8 m, calculer le temps nécessaire pour que la hauteur d’eau
atteigne 0,4 m.

Exercice 3.12
(Cet exercice est inspiré d’un TD de Dimensionnement et Opérations Unitaires de 2éme année).

Soit & calculer le NUT (Nombre d’Unités de Transfert) suivant :

/sortle dC
entrée _07 1C + 27 68 —-C

ott C est la concentration, qui est de 0,8 mol/m? en entrée et de 2,36 mol/m?3 en sortie.
Calculer ce NUT.

Exercice 3.13
(Cet exercice est inspiré d’un TD de Réacteur de 2éme année).

On cherche a calculer la constante de vitesse a 25°C' de la réaction d’hydrolyse alcaline de 'acétate d’éthyle
(CH3COOC Hs) par la soude en phase aqueuse :

CH3COOC3Hs + NaOH = CH3COONa + CoH50H

On note ¢, la concentration en acétate d’éthyle et cs la concentration de soude. Ces deux concentrations
diminuent donc au cours du temps.
On se place dans les condition suivantes :

e Concentration initiale en soude : ¢4 = 68,2 mol /m?
e Concentration initiale en acétate d’éthyle : c,o = 52,6 mol /m?>
Au bout de trente minutes on mesure une concentration en soude cg39 = 49,7 mol /m3.

On sait que la réaction est d’ordre 1, ce qui donne apres un petit bilan stoechiométrique :

deg
dt

On cherche a déterminer la valeur de la constante k.

= —kcaCs = —k(cqo — €50 + C5)-Cs
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1 1
1. Montrer que 'on a dcg <— - —) = —k(cao — cs0)dt.
Cs Ca0 — Cs0 + Cs

2. Intégrer I’égalité précédente afin de déterminer k (qui a bien sir une unité!).

Exercice corrigé 3.1
Calculer les intégrales suivantes :

1. I :/ cos? tdt
0

2. I :/ (sin?t + cost)dt
0

. )
1. Soit a calculer I1 = / cos? tdt :
0

rTT

I :/ cos® tdt

Jo
"™ 1+ cos(2t
= I = Lreosel) ( )(ll,

oy

N | =<

E 1,:{
0

~
fin
|
]

[\)

rTT
Soit a calculer Iy = / (sin2 t + cost)dt :
Jo

I = / (sin® t + cost)dt

0
T (1 — cos(2t)
_— I, = — + cost | dt
Jo 2
{ t sin(2t) . } B
= I= |- - + sint
2 4 0
— I, = z
2

Exercice corrigé 3.2
1. Montrer que pour les fonctions f impaires définies sur un intervalle I, quel que soit a € I, on a

’ f(z)dz =0.

2. Montrer que pour les fonctions f paires définies sur un intervalle I, quel que soit a € I, on a

_Oa F)de = /0 " f(w)ds.

1. On décompose l'intégrale :

a 0 a
/ f(x)dze = / f(z)dz + / f(z)dz
J—a J—a J0
N ——’ N —
I J
Or si f est une fonction impaire, alors Vo € I, f(—xz) = —f(x).
Donc si on fait le changement de variable u = —z dans la deuxiéme intégrale, on a :

"0 0 "0 "0 a
J = /7 f(z)dz = f(—uw)d(—u) = / (=f(uw)(—=d(u)) = / fu)du = */“ fuw)du = -1

Ja Ja Ja

On a donc / fle)de =1 -1 = / f(z)dz =0 |

0
2. On part de l'intégrale / f(x)dz.
J—a
Si f est une fonction paire, alors Vo € I, f(—=x
Donc si on fait le changement de variable v =

= f(z).

r, on a :

"0 ) "0 "0 ra
/ f(:l:)d:l::/ f(—u)d(—u) :/ (—f(uw)du) = / f(z)dz = f(z)dz

Ja J 0O

Exercice corrigé 3.3

L’étude cinétique des réactions chimiques consiste a observer I’évolution de I’avancement de la réaction au
cours du temps et de déterminer les vitesses de réaction.
Soit par exemple une réaction dont I’équation s’écrit :

aA+bB —cC
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On s’intéresse plus particulierement au réactif A affecté du nombre stoechiométrique a.
On note &(t) Pavancement de la réaction & un instant ¢, si bien que la quantité de matiere du réactif A,
notée n4(t), est donnée par :

na(t) = no — a€(t)

oll ng est la quantité de matiere initialement introduite.

La vitesse de la réaction est définie par :

d
oty = 5

Si tous les autres réactifs sont introduits en exces, on montre que l'on peut dans de nombreux cas mettre
cette vitesse sous la forme :

v(t) =k (na(t)”
et alors on dit que la réaction est d’ordre o par rapport au réactif A.
d?’LA

dt

1. Exprimer la vitesse de réaction en fonction de

na
A padt.
(na)

dn

(na)®

2. En déduire que

t
3. Exprimer / en fonction de n4(t), ng et a pour les trois cas « =0, a =1 et @ = 2.
0

4. En déduire n4(t) en fonction du temps et de ng pour chacun de ces trois cas.
1 1 —na(t 1 dn 4
1wy =98 d (romma®y | gy _Ldray
dt dt a a dt
1 dn/ 1n 4
2. v(t) =k(na(t)® =—— ara A adt |
a dt (na)®
3. e av=0:
"t dn, 4 "t 't dn
/ ¢ ,,)'4 = / dna = [n,\]:) =na(t) —na(0) = / L"[) =na(t) —no |
Jo 1 Jo Jo (na)
e aa=1:
rt 1 . L ] nal(t
/ ana :[ln(n,;)]:):> / ”Hl :ln<”4( )) .
Jo mMA Jo (’7.4) no
o a=2:

/'[ dna
Jo (na)?

_—

1 t
[ na ] 0

"t dna 1 1

0 (”A)Z -

no

na(t) '

dn 't dn g
7‘{\ = —kadt = / A“ = [71«(1,//}(,) = —kat.
(na) o (na)
e a=0:n4(t) —ng =—kat = | na(t) =nog — kat
na(t —ka
no
1 1 no
e a=2: — — = —kat = | na(t) = ———
no na(t) 1 + nokat

Exercice orri&é 34
Soit I = | ———
0 V242
1. Calculer la dérivée de la fonction f : z — Va2 + 2.

2. En déduire la dérivée de la fonction g définie sur [0 ; 1] par g(z) = In(z + V22 + 2).
3. Calculer I.

T

1. f'(z) =20 Xx ——— —| f'(z -t
fi(x) =22 % o - f'(x) =
1+ V212 Vrz +2+ , 1

2. g'(x) = g' ()

2 42

= £

3. I = T

"1 dz 't i } . .
/” N = /() g (z)dx = [.(](,1:)](1) =g(1) — g(0) = In(1 + V3) — In(vV2) =

1
1:111<

+
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Chapitre 4

Equations différentielles

1 Définition

Rappel :
Une équation est une égalité faisant intervenir une inconnue.
Résoudre I’équation, c’est déterminer la(les) valeur(s) de cette inconnue.

Exemple 4.1
o x+ 2 =23 : équation du premier degré d’inconnue x

o t2 4+t —2=0 : équation du second degré d’inconnue t

° { ;JT/ ?/::03 : systeme d’équations d’inconnues x ety
On appelle équation différentielle une équation liant une fonction f(x) a ses dérivées f'(z), f(z),
@) (2),..., et éventuellement & d’autres fonctions.

Résoudre I’équation différentielle, c’est déterminer la fonction f.

Exemple 4.2 o (4) Nx)— f(x)==x
° (1) . f//(;l,') — QJ(JJ) = (r) ) fa”( ) Jj(,) 9 (N 0.2
e (2) : 2f'(x)—2xf(x) = cos(x) « (4 fw)—3f(2) +3xf(2) =20

«(® : fla)—3f(x)=2 « (6) : —f'(@)+f"+5f(x)=—4

L’ordre de I’équation différentielle est 'ordre de la dérivée la plus élevée.

Le terme ne faisant pas intervenir f ou l'une de ses dérivées, et que I'on place souvent a droite de 1’égalité,
est appelé second membre de 1’équation.

Le coefficient du terme d’ordre 2 est le coefficient devant f”(x), le coefficient du terme d’ordre 1 est le
coefficient devant f’(x) et le coefficient d’ordre 0 est le coefficient devant f(z).
Ces coeflicients ne sont pas nécessairement des constantes, il peuvent dépendre de la variable z.

Dans le cas d’une équation différentielles d’ordre n, il y aura n constantes d’intégration. L’équation telle
quelle a une infinité de solutions, et pour pouvoir donner une unique solution il faut disposer de n conditions
aux limites qui permettront de déterminer ces constantes.
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2 Equations différentielles du premier ordre

2.1 Equations différentielles du premier ordre sans second membre
2.1.1 Méthode générale

La forme générale d’une équation de ce type est :
f'(z) —a(z) x (f(x))" =0 o a est une fonction de z et n € Z

On peut la réécrire :
f'(@) = alz) x (f(z))"
Pour la résoudre, on procede de la maniere suivant :

fflz) . f'=@)
fr@)y )

e On integre a gauche et a droite de 1’égalité :

e On exprime =a(x);

xT !/
x
/ fn( ) de =A(x)+k ; k=cste
fr(x)
Ou lon a noté A(x) une primitive de a(z).
Les solutions n’ont pas la méme forme suivant que n =1 ou n # 1. Les deux cas sont détaillés ci-dessous.

2.1.2 lercas:n=1

Exemple introductif :
Résoudre 1’équation différentielle f/(x) — 2z f(z) = 0 avec la condition aux limites f(1) = 1.

Forme générale des solutions :

f'(x)
f(x)

On primitive a gauche et a droite de 1’égalité :

=a(z) pour tout x tel que f(z) #0

In|f(z)|=A(x)+k ; k=cste (on rappelle que A est une primitive de a)
& |f(x)| = eA@tE = ¢k x AW)
& f(z) = xe* x eA®
On pose K = +eF = cste.

Finalement :

f(z) = KeA® . K =cste

La constante K se détermine grace a la condition aux limites.

Exemple 4.3
Résoudre :

o f'(z)—xf(x) =0 avec f(0) =3
° %f’(z) + %f(l) =0 avec f(1) =1
o f/(x) — cos(3z)f(x) =0 avec la condition aux limites f(0) = 10
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2.1.3 2eémecas:n#1

Exemple introductif :

2
eésoudre l'équation différentielle T)— — x))” = 0 avec la condition aux limites = 1.
Résoudre 1'é ion diffé ielle f =0 1 diti limi 1 1
T

Méthode générale de résolution :

4
(@) —a(x) (f(z)" =0= JJ:”((xx)) =a(z) = f'(z) x f"(z) = a(z) pour tout z tel que f(x) #0
On primitive a gauche et a droite de I'égalité :
1
pp— 1f‘”+1(z) =A(x)+k ; k=cste (on rappelle que A est une primitive de a)

& fr(2)=(0-n)(Ax)+k) ; k=cste

& |f@) =[1-n)(Alx) +k)T7 ; k=ecste

La constante k se détermine grace a la condition aux limites.

Exemple 4.4
Résoudre :
. 1
o fl(x) +zf3(x) =0 avec f(2) = 5

s}

e fl(x)=—— avec f'(1) =2

2.2 Equations différentielles du premier ordre avec second membre, avec n = 1
Exemple introductif

Résoudre I’équation différentielle f/'(x) + f(x) = e~ avec f(0) = 0.
Méthode générale
Ces équations ont la forme générale :
f(x) —a(z)f(z) =b(x) ol aetbsont des fonctions de z

On utilisera la méthode de variation de la constante pour résoudre ces équations.

lére étape : On résout I'équation différentielle sans second membre f'(x) — a(x)f(x) = 0, en remplagant
la constante d’intégration par une fonction de z, que ’on notera C(z) :

2éme étape : On reprend I’équation complete et on la réécerit avec la solution précédente :

f'(@) = a(x) f(z) = b(x)
—  C'(2)e?®) + C(x)a(x))e™ — a(z)C(z)er ™ = b(z)
— ()™ = b(2)

On arrivera toujours avec cette méthode a éliminer C'(z) et & n’avoir plus que C'(z).
3éme étape : On isole C'(z) :
C'(2)e®) = b(z)
= C'(z) = b(z)e 4@
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4éme étape : On intégre 'expression précédente de fagon & exprimer C(z), & une constante d’intégration
k pres.
On aura alors déterminé la forme générale de f en remplagant C'(x) dans l'expression de f(z) trouvée
a l'étape 1 :

f(z) =A@ /b(x)e_A(x)dx

5eme étape : On utilise la condition aux limites pour déterminer la constante d’intégration k.

Exemple 4.5
e Résoudre 'équation différentielle f'(x) — xf(x) = —x avec la condition auz limites f(0) = 5.

1 2 .

e Résoudre l’équation différentielle éf’(q)Jrg—f(T) = cos(z?) avec la condition auz limites f <f‘ g) =
x \

0.

3 Equations différentielles du second ordre a coefficients constants

3.1 Equations différentielles du second ordre a coefficients constants sans se-
cond membre

Ce sont les équations différentielles de la forme :

af’(z) +bf' () +cf(x) =0  a; b; c=cstes

3.1.1 Equation caractéristique
On définit le polynéme caractéristique de ’équation, noté K (r) :
K(r)=ar’ +br +c
La forme générale des solutions de ’équation différentielle dépend des solutions de I’équation :
K(r)=0

Il faut donc calculer le discriminant A = b? — 4ac et distinguer les trois cas A > 0, A < 0 et A = 0.

3.1.2 Premier cas : A >0

Alors K(r) a deux racines simples réelles :

_ b+ VA —b— VA

et ro =

n 2a 2a

Et les solutions de ’équation différentielle sont :

‘f(a:) = A" + Ase™® ; Aq, Ay = cstes‘

Les constantes A; et A sont déterminées grace aux conditions aux limites.

Exemple 4.6
Résoudre 'équation différentielle f"”(x) — 5f'(x) + 6f(x) = 0 avec les conditions aux limites f(0) = 0 et

F1(0) =1.
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3.1.3 Deuxiéme cas : A <0

Alors K (r) a deux racines complexes :

—b+iv-A
zZ1 = T oa et Zo

_ —b—iv-A
o 2a

Et les solutions de I’équation différentielle peuvent s’écrire de trois maniéres (qui sont équivalentes) :

Q_GAx) + Bsin <_Ax>} i A, B = cstes

2a

flz) = e 2" {A cos (

_ b ivV—A _ivV=A
ou f(x)= A" + Aye®” = e 2" [Ale 2a ¥ 4 Ase” 2a I} i Ay, Ay = cstes

2a

ou f(x)= Age™2a% cos < T+ ¢5) i Ay ¢ = cstes

Ou les constantes sont déterminées grace aux conditions aux limites.

est la

b . .
On remarquera que dans les expressions précédente, % est la partie réelle des racines et
a

valeur absolue de leur partie imaginaire.

Exemple 4.7
Résoudre équation différentielle f”(x) + 6f'(x) + 13f(x) = 0 avec les conditions aux limites f(0) = 0 et
F(5) =4

3.1.4 Troisieme cas : A =0
Alors K (r) a une racine double :

To = %
Et les solutions de ’équation différentielle sont :

‘f(l‘) = (A1 + Agx)e™® 5 Ay, Ay = cstes

Les constantes A; et As sont déterminées grace aux conditions aux limites.

Exemple 4.8
Résoudre ’équation différentielle " (x) + 4f'(x) + 4f(x) = 0 avec les conditions aux limites f(0) = 1 et
f(0)=0.

3.2 Equations différentielles du second ordre a coefficients constants avec se-
cond membre

Soit 'équation différentielle suivante pour la fonction f :
af’(z) +bf'(z) + cf(x) =u(x) ol a,b,c=cstes et u est une fonction connue
Toutes les solutions de cette équation sont de la forme :
f(@) = fs(@) + folx)

ou fs(z) est une solution générale de 'équation différentielle sans second membre et f,(x) une solution
particuliere de I’équation complete.

On trouve fs en résolvant 'EDSSM, ce que 'on sait faire (voir partie précédente).

Il nous reste & déterminer la solution particuliere f,, qui dépend bien évidemment du second membre u(z).
On la trouve en la devinant ou en utilisant la méthode générale présentée ci-dessous.
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3.2.1 1ler cas: u(z) = P,(z) ou P, est un polynoéme de degré n

On distingue trois cas selon les valeurs de b et ¢ :

e Sic#0, alors f, est un polynome de degré n;
e Sic=0et b#0, alors f, est un polynéme de degré n+ 1;
e Sic=0b=0,alors f, est un polynome de degré n + 2.

fp étant solution de I’équation compleéte, les coefficients du polynéme f, sont & déterminer par identification
en remplagant f par f, dans I’équation différentielle complete.

Exemple 4.9

Résoudre :
o f(x)+ f(x) —2f(x) =5—2x avec f(0) = f'(0)=0
o f(x)+ f(x) —2f(x) =1—2x avec f(0) =4 et f'(0) =1
o f(z)+2f () =4x+2 avec f(0) =0 et f'(0) =0

3.2.2 2é cas : u(x) = €™ P,(z) ou P, est un polynéme de degré n et m € R

Alors la solution particuliere est de la forme fy,(z) = €™Q,(z) ot @ est un polynéme de degré p.
On distingue trois cas selon si m est une racine du polynéme caractéristique K et selon la multiplicité de
cette racine.

e Si K(m) # 0 (c’est-a-dire que m n’est pas une racine de K), alors p=n: f, = e""Qy(z)
e Sim est une racine simple de K, alorsp=n+1: f, = €™ Qpni1(x)
e Sim est une racine double de K, alorsp=n+1: f, = €""Qp42(x)

fp étant solution de I’équation complete, les coefficients du polynéme ) sont a déterminer par identification
en remplacant f par f, dans I’équation différentielle complete.

Exemple 4.10
Résoudre f"(z) — f(z) = (1 + z)e*® avec f(0) = f/(0) =3

3.2.3 3& cas : g est de la forme g(z) = e"**P(z)sin(ax) ou g(x) = e**P(z)cos(axr) ot P est un
polyndéme de degré n

On met cos(ax) et sin(ax) sous la forme d’une exponentielle complexe, et on résout avec la méme méthode
que précédemment.

Exemple 4.11
Soit a résoudre ’équation différentielle :

(@) +2f (@) + 2 () = e Tsina ()

1 L 1 )
1. Montrer que e~ % sinx = ?6’,(_1_”)“" — 56_(1"'_7')‘7:.
i i

2. Montrer que si :

1 .
f1 est solution de Uéquation f{(x)+ 2f1(x) +2f1(x) = 2—7_6<*1+7)90 (1)

et si fo est solution de l’équation :

F4(@) + 2£4(w) + 2o (@) = — e 007 (2)

alors la fonction [ = f1 + fa est solution de (x).
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x .
3. Vérifier que la fonction fio(x) = —=e("14D% est une solution particuliére de (1) et donner la forme

générale de fi.
4. En déduire la forme générale de f5.
5. Résoudre finalement (x) avec les conditions initiales f(0) =0 et f/(0) = 0.
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4 Exercices du chapitre 4

Exercice 4.1
Résoudre :

1. f'(z) —4f(x) =0 avec f(0) =2

2. £f/(t) — 2/(t) = 0 avec f(1) =3

3. () + (f(t))2 =0 avec f/(0) = -1

4. f/()f(t) —2(f(t))> =0 avec f(1) =1

5. y'(x) — y(z) =z avec y(1) =4 sur Ry
T
6. dz(tt) +xz(t) = te”t avec £(0) = 1
dz(t
7. ”;(t ) 5(t) = £ avec 2(0) = 5

Exercice 4.2
Résoudre les équations différentielles suivantes :

L. f7(t) +3F/(t) — 4f(t) = 0 avec f£(0) =1 et f'(0) =

2. 2"'(t) — 161()+100x()—Oavecx(O):Oetx’(()):M.
3. f"(8) +2f'(t) + f(t) = 0 avec f(0) =10 et f'(0) = 7.

4. —f"(t)+9f(t) =0 avec f(0) =3 et f/(0) =3

5. y"(z) + ¢/ (z) + y(x) = 0 avec y(0) =0 et 3/'(0) = 1.

6. y"(x) + 2y (x) —y(x) =0 ; y(0)=0 ; y(0)=2

7.y (x) =2y () +y(x) =0 ; y(0)=1 ; y'(0)=3

Exercice 4.3
Résoudre les équations différentielles suivantes, ol y est une fonction de z :

1.y + 4y’ — 5y =10 avec y(0) =4 et /(0) =0

2. y" + 4y + 5y =10z — 2 avec y(0) =1 et ¢/ (0) =1

3. 2y" — by — 3y = —3t2 — 10t + 4 avec y(0) =0 et 3/ (0) = —1
4. y" +y +y=e(2? - 22+ 3) avec y(0) = 1 et 3/ (0) = —1

Exercice 4.4
1. On cherche a résoudre 1’équation différentielle suivante :

Y (2) =y(@) xIn(y(z)) ; y0)=¢ (%)

(a) Justifier que la fonction y est a valeurs positives.

(b) On pose z : z +— z(x) = In(y(z)).
Calculer 2’(x), établir ’équation différentielle & laquelle obéit z et la résoudre.

(¢) En déduire la fonction y solution de I’équation (x).

2. On cherche a résoudre I’équation différentielle suivante sur R :

2cf'(x) + f(z) +2*f*(x) =0
1
, @)
Etablir I’équation différentielle a laquelle satisfait g et la résoudre.
(b) Déterminer f(x).

(a) On considere la nouvelle fonction g(z) =
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Exercice 4.5

On cherche la loi donnant la température d’un corps se refroidissant dans un environnement dont la tempé-
rature ambiante est inférieure a sa température initiale.

On admet que la vitesse de refroidissement d’un corps est proportionnelle a la différence de température de
ce corps avec la température ambiante.

On note () la température de cet objet a 'instant ¢ (exprimé en secondes) et 6, la température ambiante.

On observe que dans une piéce ou la température ambiante est maintenue a 20°C', un objet chauffé a 100°C
voit sa température chuter & 60°C en 10 minutes.

1. Montrer que 6(t) vérifie une équation différentielle de la forme :
dé
i a(f(t) — 6,) a = cste

2. Quels sont le signe et I'unité de o ?

3. Résoudre cette équation différentielle afin de déterminer 6(t).

4. Au bout de combien de temps 'objet aura-t-il atteint une température de 25°C'?

Exercice 4.6
Un réservoir cylindrique de hauteur H = 2 m et de A [
rayon R = 1 m initialement plein se vide avec un T
débit volumique qui est proportionnelle & la hauteur
\%
z de liquide : s azx ;a = cste (le débit volu-
mique est en m3.s71).
1. Quel doit étre le signe de ' ?

2. Ecrire I’équation différentielle a laquelle obéit
z(t) et la résoudre.

3. Quelle limite voyez-vous a cette modélisation ? - >
(C’est-a-dire quel probléme présente cette so- 2R
lution ?)

Exercice 4.7

On souhaite déterminer expression de la température de 'eau T'(y) (en © C') dans un échangeur de chaleur
cylindrique de longueur L = 1 m.

Un bilan thermique sur un trongon de tube permet d’aboutir a I’équation différentielle suivante :

dT'(y) _
W + 0, 67 (T(y) - Ta) =0

On donne les valeurs numériques suivantes :
e Température a 'entrée du tube : T'(0) = 80°C
e Température ambiante : T, = 5°C
1. Déterminer T'(y).

2. Calculer la température a la sortie de I’échangeur.

Exercice 4.8

On considere un objet de masse m qu’on lache sans vitesse initiale d’'une hauteur h, et qui tombe verticale-
ment.

On note z(t) laltitude (en metres) a Uinstant ¢ (I'instant ¢ = 0 correspondant au moment o on le lache).
Si 'on néglige tout frottement, I'altitude z obéit a I’équation différentielle suivant :

d?z

My =M

Ot g = 9,81kg.m.s2 est l'accélération de la pesanteur.
1. Donner 'expression des deux conditions initiales.

2. Résoudre cette équation différentielle.

CHAPITRE 4. EQUATIONS DIFFERENTIELLES 95



3. Dans ces conditions, en combien de temps un marteau de 2 kg tombe-t-il d’une hauteur de 50 ¢cm ?

Et une plume de 20 g7

4. Pourquoi ce résultat est-il étonnant ? A quoi est-ce da?

Exercice corrigé 4.1

y'(z) +2y(x) =2 ; y(0)=0
Y'(@)—ylz) =e"(xz+1) ; y(0)=-3
1
(2?2 + 1)y (z) + 2oy(zx) +1=0 ; y(1)= -3
Y(@ver+l-ylx)=1 ; y(0)=0
N 1 — e 27 P
1. | y(x) 1 + 5
2. |y(x) = ¢ <% b x .‘3)
3. | y(x) = '2'+l
4. ‘1/(!)7 \/,1‘2+17,1r7l‘

Exercice corrigé 4.2

Donner la solution f de chacune des équations différentielles suivantes.

Aucune justification n’est exigée.

Equation différentielle Solution
fl@)+6zf(x) =0 ;5 f(0)=3
f'(@) +6xf(x) =62 =0 ; f(0)=3
f'(@) —4f'() =5f(x) =0 ;5 [f(0)=0 ; [f'(0)=6
Pfq\mtion différentielle Solution
f(z) +6xf(z) =0 f(0) =3 f(z) =373 o?
f'(z) + 6z f(xz) — 62 =0 f(0)=3 fz) = 2e~ 322 |
f(x) —4f' (z) —5f(x) =0 avec f(0)=o0 f(0)=6 f(z) =€’ —e

Exercice corrigé 4.3

On considere un circuit RLC série en régime libre (pas de générateur).

Alors la tension v aux bornes du condensateur obéit &

d®u wpdu
R + -
dt? Q dt
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I’équation différentielle :

+wiu =0
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1

. L
Ol wy = Jic’

1
“=rVe

7

h

Les composants sont tels que R < 2

Q

Déterminer u(t).

20 ¢

Vous pourrez poser A =

‘ . L. 2 wo
1. Equation caractéristique : r

2
La discriminant est A = (%) — -Lu(‘: =
Il faut déterminer le signe de A :
R <2 L 1 1 L
1< 2 == =< —=4/—=

C 2 RV C

w 2
On a donc A = (1ﬂ
Q

N

Le condensateur est initialement chargé a

du
une tension F et 'intensité i = C' T est initialement nulle.

WO o wo/4Q? — 1

2Q

2
+ g =0.

(ﬂ)z (1—4Q?)
0 :

1 . .
¢Q>§:>4Q~’>1¢174Q“’<()§A<0.

\/4Q2 — l) et il y a deux racines :

wo (1 +i/4Q% — 1) . wo(l —i4/4Q2% — 1)
= et ro =
2Q 2Q
w wo\/4Q? — 1
Pour simplifier on pose A = 0 et Q= ¥
2Q 2Q

La solution est donc de la forme :

u(t) =

On en déduit :

du
dt

2. Les conditions initiales donnent :

u(0) = E
{ du

—(0) =0
(lf,()

3. Finalement :

e [Acos(Q2t) + Bsin(Qt)] A ; B = cstes

M [(AA + QB) cos(Qt) + (AB — QA) sin(Qt)]

A=E
XA+ QB =0

=1

2Q

“0 0V 4Q? — 1
u(t) = Ee2Q" {cos <M’ 2 I,> -

Exercice corrigé 4.4

On étudie le mouvement d’un frisbee lancé a I’horizontal.

A Dinstant ¢ = 0 il est lancé d’un point M de coordonnées z(0) = 0 et 2(0) = h.
A tout instant ¢ on note v, (t) la vitesse horizontale et v, (t) la vitesse verticale.
La vitesse verticale initiale est nulle : v,(0) = 0.

La vitesse horizontale initiale vaut v, (0) = vg.

Ce frisbee a une masse m = 0,175 kg.

Il est lancé dans Dair et le coefficient de frottement fluide est alors a = 0,02.1073 kg.s~ 1.

On prendra l'accélération de la pesanteur égale a g = 10 m.s—~.

2
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Alors la vitesse horizontale v, (t) en fonction du temps est régie par ’équation différentielle suivante :
, @
GO+ Su ) =0 (1)
Et la vitesse verticale v,(t) en fonction du temps est régie par ’équation différentielle suivante :

)+ —v(t) =g (2)

o
m
Dans ces équations différentielles :

1. vl (t) est la dérivée temporelle de v, () ;
v, (t) est la dérivée temporelle de v,(t);
«, m et g sont des constantes.
Résoudre I’équation différentielle (1) afin d’exprimer v,(t) en fonction des constantes vy, m et a.

Résoudre I’équation différentielle (2) afin d’exprimer v,(t) en fonction des constantes o, m et g.

W e

. En déduire les expressions de x(t) et z(t).

1. L’équation (1) est une équation différentielle du premier ordre sans second membre :
«
!’
v, (t) + —vz(t) =0
m

@
=  vl(t) = ——wv,(t)
m

Qg

=  vz(t) = ke m k = cste

On utilise la condition initiale pour trouver k :
v2(0) =vg =k = vo

Finalement :
L ¢

v (t) = voe ™

2. L’équation (2) est une équation différentielle du premier ordre avec second membre.
On commence par résoudre ’équation différentielle sans second membre, qui est la méme que ’équation (1). On obtient donc

v, (t) = kr(t)(zfv%t ou k est une fonction de t.

On réinjecte cette solution dans I’équation complete :
«@
v, (t) + —v.(t) =g
m

./ -t
= k'(t)e m" =g

= 0. (t) = *— + ae ' ;  a = cste
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On utilise la condition initiale pour trouver a

m m
v.(0) =0 g—+a:0:>a:7g—
« «
Finalement :
3.

Vz (t) = ﬂ (
(a) ve(t) = 2'(t) = voe

1—e %t)
«
_a vom _ o
mt = xz(t) = S mt bk 3 k= cste.
«
On utilise la condition initiale pour trouver k :
vom vom
2(0)=0= ——— 4 k=0= k= —
@
Donc finalement :
vom _a
z(t) = 0 (1 —e ;:L l')
m _a m m _a
() va(t) = 2'(t) = I (1 —e ’) = ) =" (t + —e m"> +k k = cste.
a «
On utilise la condition initiale pour trouver k :

Donc finalement :

2

m 2 m
z(()):h:>g(;) +k:h:>k:h7g(;)

2 «
z(t):thﬂtJrg(ﬁ) (67Wt
fe! @
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