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3 Polynômes 19
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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3 Opérations sur les polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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1Fonctions de plusieurs variables
Chapitre 1

1 Un exemple en thermodynamique : volume d’un échantillon de
gaz parfait

On sait que pour un échantillon de gaz parfait de n moles, la pression P , le volume V , la température T et
la quantité de matière n sont reliés par la relation :

PV = nRT où R est la constante des gaz parfaits.

On a donc :

V =
nRT

P

La volume est donc une fonction de trois variables : n, P et T .
Le volume, la pression, la température et la quantité de matière étant des nombres réels positifs, cette
fonction est définie sur R3

+ et prend ses valeurs dans R+. On note :

V : R3
+ → R+

(n, T, P ) 7→ V (n, T, P ) =
nRT

P
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2 Fonction de plusieurs variables

2.1 Définition

Soient n variables xi (i ∈ {1, 2, ..., n}).
Une fonction f de ces n variables est une relation qui à ces variables associe un unique nombre
f(x1, x2, .., xn) :

f : E 7→ F

(x1, x2, ..., xn) → f(x1, x2, ..., xn)

Si tous les xi sont des réels, l’ensemble de départ E est une partie de Rn.
L’ensemble d’arrivée F est une partie de R.

Le domaine de définition de f est le produit des domaines de définition de f par rapport à chacune des
variables. Si l’on note Di le domaine de définition par rapport à la variable xi :

D = D1 ×D2 × ...

On peut aussi noter :
D = {(x1 ; x2 ; ...) ; x1 ∈ D1 ; x2 ∈ D2 ; ...}

Pour alléger les notations on notera parfois x = (x1, x2, ...xn) le n-upplet des variables, et f(x) = f(x1, x2, ..., xn).

Exemple 1.1
1. f1 : (x, y, z) 7→ f1(x, y, z) = |x+ y − z|

2. f2 : (x, y) 7→ f2(x, y) =
x2

y2 − 1

3. f3 : (x, y, z) 7→ f3(x, y, z) = x+ y − xy

z

4. f4 : (x, y) 7→ f4(x, y) =
√
x− y

2.2 Représentation graphique d’une fonction de deux variables

Soit une fonction f de deux variables x et y :

f : (x ; y) 7→ z = f(x ; y)

On peut représenter une telle fonction dans l’espace à trois dimensions : c’est la surface constituée des points
de coordonnées (x ; y ; z).
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Exemple 1.2
Dans le repère en trois dimensions :

f : (x ; y) 7→ 10

x2 + y2 + 1
f : (x ; y) 7→ x2 + y2

f : (x ; y) 7→ x− y

3 Dérivées

3.1 Dérivée partielle d’ordre 1 par rapport à l’une des variables

Soit une fonction f de n variables xi.

On appelle dérivée partielle de f par rapport à la variable xi et on note
∂f

∂xi
la fonction obtenue en

dérivant f par rapport à xi, toutes les autres variables étant considérées comme des constantes.

On a alors :
∂f

∂xi
(x1, ..., xi, ..., xn) = lim

f→0

f(x1, ..., xi + h, ..., xn)− f(x1, ..., xi, ..., xn)

h

Pour bien signifier que les autres variables sont constantes, on les met parfois en indice :

∂f

∂xi

)
xj 6=i

Remarque :

Dans le cas d’une fonction d’une seule variable, on ne note pas
∂f

∂x
, mais

df

dx
.

Exemple 1.3
Déterminer les domaines de définition et calculer toutes les dérivées partielles des fonctions suivantes :

• f : (x, y, z) 7→ f(x, y, z) = x+ y + z
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• g : (x, y) 7→ g(x, y) =
x2

y2 − 1

• (n, T, P ) 7→ V =
nRT

P

3.2 Dérivées partielles d’ordres supérieur

On se limite dans la définition à une fonction de deux variables, les définitions se généralisant à des fonctions
de plus de deux variables.
Soit une fonction f : x 7→ f(x, y).
On peut à priori définir quatre dérivées partielles secondes :

• ∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
• ∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

) • ∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
• ∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
Mais on montre que l’on a toujours

∂2f

∂y∂x
=

∂2f

∂x∂y
.

Les dérivées partielles d’ordre n se calculent de la même manière à partir des dérivées partielles d’ordre
n− 1.

Exemple 1.4
Déterminer les dérivées partielles d’ordre 2 des fonctions de l’exemple précédent.

3.3 Différentielle

La différentielle d’une fonction f , notée df , représente la variation infinitésimale de f(x1 ; x2 ; ... ; ;xn)
résultant des variations inifinitésimales dxi de chacune des variables : si chaque variable xi varie de dxi,
alors le nombre f(x1, x2, ...) varie de df .

Soit une fonction f de n variables xi.
La différentielle de f est donnée par :

df =

n∑
i=1

∂f

∂xi
dxi =

∂f

∂x1
dx1 +

∂f

∂x2
dx2 + ...+

∂f

∂xn
dxn

Exemple 1.5
Déterminer les différentielles des fonctions précédentes.

4 Équations aux dérivées partielles

Une équation aux dérivées partielles (EDP) est une équation faisant intervenir les différentes dérivées par-
tielles d’une fonction de plusieurs variables.

On ne traitera que des exemples.

4.1 Exemple 1

On cherche la fonction f(x, y) obéissant aux système d’EDP suivant :

∂2f

∂x2
= 0 (1)

∂2f

∂x∂y
= 3y2 (2)

f(1, 0) = 0 (3)

f(0, 0) = 1 (4)
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4.2 Exemple 2

On cherche la fonction f(x, y) obéissant aux système d’EDP suivant :
∂f

∂x
= 2xy + y2 (1)

∂f

∂y
= x2 + 2xy (2)

f(0, 0) = 3 (3)

4.3 Exemple 3

On cherche la fonction f(x, y) obéissant au système d’EDP suivant :

∂2f

∂x2
+ f(x, y) = 0 (1)

∂f

∂y
= cos(x) (2)

f(0, 0) = 3 (3)

f
(π

2
, 3
)

= 4 (4)

5 Intégrales multiples

5.1 Exemple introductif

Calculer l’intégrale suivante : ∫ 1

x=0

∫ π

y=0

∫ 2

z=−1

xz2 sin(y) dz dy dx

5.2 Méthode générale

Soit à calculer l’intégrale d’une fonction de plusieurs variables indépendantes :

I =

∫ b1

x1=a1

∫ b2

x2=a2

...

∫ bn

xn=an

f(x1 ; x2 ; ... ; xn) dxn dxn−1 ...dx2 dx1

Cette intégrale se calcule en calculant successivement les intégrales par rapport à chacune des variable, en
gardant les autres constantes :

• On commence par intégrer selon xn, et on a alors une fonction qui ne dépend plus de xn :

g(x1 ; x2 ; ... ; xn−1) =

∫ bn

an

f(x1 ; x2 ; ... ; xn) dxn

l’intégrale I se réécrit alors :

I =

∫ b1

a1

∫ b2

a2

...

∫ bn−1

an−1

g(x1 ; x2 ; ... ; xn−1) dxn−1 ...dx2 dx1

• On intègre ensuite selon xn−1, et on a alors une fonction qui ne dépend plus de xn−1 :

h(x1 ; x2 ; ... ; xn−2) =

∫ bn−1

an−1

g(x1 ; x2 ; ... ; xn−1) dxn−1

l’intégrale I se réécrit alors :

I =

∫ b1

a1

∫ b2

a2

...

∫ bn−2

an−2

h(x1 ; x2 ; ... ; xn−2) dxn−2 ...dx2 dx1

• etc

L’ordre d’intégration n’a pas d’importance.
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6 Exercices du chapitre 1

Exercice 1.1
Soient les fonctions suivantes :

• f1(x, y) = 3x+ 2y

• f2(x, y, z) =
xy2

z

• f3(x, y) = ln(x+ z)

• f4(x, y) =

√
x

y

• f5(x, y, z) =

√
x

y
+ z

• f6(x, y) =

√
−y + x2

√
y

• f7(x, y) =
ln y√
x− y

• f8(x, y, z) =
ln(x2 + 1)

yz

• f9(x, y, z) = (x− 1)2 +
(y − 2)2

(z − 9)2

• f10(x, y, z, t) =
x+ y

z2 − 4
+
√
t

1. Déterminer leur ensemble de définition, et pour les fonctions de deux variables les représenter dans
le plan.

2. Déterminer toutes les dérivées partielles de ces fonctions.

Exercice 1.2
En thermodynamique, les coefficients thermoélastiques d’un gaz sont définis par :

• Coefficient de compressibilité isotherme : χT = − 1

V

∂V

∂P

)
T,n

• Coefficient de dilatation à pression constante : α =
1

V

∂V

∂T

)
P,n

• Coefficient de variation de pression isochore : β =
1

P

∂P

∂T

)
V,n

Donner les expressions des coefficients pour un gaz parfait en fonction de V , P , T , n et de la constante des
gaz parfait R.

Exercice 1.3
1. Soit la fonction f1(x, y) =

x

y
où x et y sont fonction de t : x(t) = t2 et y(t) = cos(2t).

Déterminer
df1

dt
en fonction de t.

2. Soit la fonction f2(x1, x2) = x1 − x2 avec x1 = cos(2y + z) et x2 =
yz

2
.

Déterminer
∂f2

∂z
et
∂f2

∂y
en fonction de z et y.

En déduire df2

3. Soit f3(x) = e3x avec x(y, z) = ln y − ln z.

Déterminer
∂f3

∂z
et
∂f3

∂y
en fonction de z et y.

En déduire df3

Exercice 1.4
1. Calculer les dérivée partielles d’ordre 1 et 2 de la fonction f(x, y, z) = xyz + x2z +

y

z
− x2y3.

2. Calculer les dérivée partielles d’ordre 1, 2 et 3 de la fonction g(x, y) = cos(xy)− x2y5.

Exercice 1.5
On s’intéresse à une barre métallique de conductivité thermique λ, de masse volumique ρ et de capacité
thermique c.
Cette barre est soumis à des variations periodiques de température avec une pulsation ω, si bien que sa
temptérature T en fonction du temps t et de la position x sur la barre est donnée par la fonction :

T (x, t) = T0e
−αx sin (ωt− αx) avec α =

√
ωρc

2λ
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Montrer que cette fonction obéit à l’équation de la chaleur à une dimension, c’est-à-dire que :

∂2T

∂x2
=
ρc

λ

∂T

∂t

Exercice 1.6
Calculer les intégrales des fonctions suivantes sur le domaine D :

1. f1(x ; y) = xy D = {x ∈ [0 ; 2] ; y ∈ [0 ; 1]}
2. f2(x ; y) = x cos(xy) D = {x ∈ [0 ; π] ; y ∈ [0 ; 1]}

Exercice corrigé 1.1
Un élément infinitésimal de surface s’exprime comme d2S = rdrdθ.
Retrouver l’expression de l’aire d’un disque de rayon R, pour lequel 0 < r < R et 0 < θ < 2π :

S =

∫ R

0

∫ 2π

0

d2S

A =

∫ R

r=0

∫ 2π

θ=0

r drdθ =

∫ R

0

[θ]
2π
0 r dr =

∫ R

0

2πr dr = 2π

[
r2

2

]R
0

= 2π
R2

2
⇒ A = πR

2

Exercice corrigé 1.2
On s’intéresse à une barre métallique de conductivité thermique λ, de masse volumique ρ et de capacité
thermique c.
Cette barre est soumis à des variations periodiques de température avec une pulsation ω, si bien que sa
temptérature T en fonction du temps t et de la position x sur la barre est donnée par la fonction :

T (x, t) = T0e
−αx sin (ωt− αx) avec α =

√
ωρc

2λ

Montrer que cette fonction obéit à l’équation de la chaleur à une dimension, c’est-à-dire que :

∂2T

∂x2
=
ρc

λ

∂T

∂t

•
∂T

∂t
= ωT0e

−αx cos(ωt− αx)

•

∂T

∂x
= −αT0e

−αx (sin(ωt− αx) + cos(ωt− αx))

=⇒
∂2T

∂x2
= α2T0e

−αx (sin(ωt− αx) + cos(ωt− αx) + cos(ωt− αx)− sin(ωt− αx)) = 2α2T0e
−αx cos(ωt− αx)

On a donc :

T0e
−αx cos(ωt− αx) =

1

2α2

∂2T

∂x2
=

1

ω

∂T

∂t

=⇒
∂2T

∂x2
=

2α2

ω

∂T

∂t

On calcule
2α2

ω
=

2ωρc

2λω
=
ρc

λ

On a donc bien
∂2T

∂x2
=
ρc

λ

∂T

∂t
: cette température vérifie l’équation de la chaleur.
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2Résolution de systèmes linéaires
Chapitre 2

1 Définition d’un système d’équations

Un système d’équations est un ensemble d’équations faisant intervenir plusieurs inconnues dépendant les
unes des autres.
Résoudre le système, c’est déterminer (si elles existent) toutes les valeurs possibles de ces inconnues.

Exemple 2.1
Le système suivant est un système de trois équations faisant intervenir les trois variables x, y et z :

x+ 2y + 2z = 2

x+ 3y − 2z = −1

3x+ 5y + 8z = 8

2 Méthode par substitution

La méthode par substitution est peut-être la plus simple parce qu’elle est systématique, mais elle peut-être
fastidieuse. Elle consiste à remplacer successivement chaque variable (ou inconnue) par son expression en
fonction des autres, jusqu’à pouvoir exprimer une seule des variables indépendamment des autres.

Exemple 2.2
La résolution du système de l’exemple 1.1 peut se faire de la manière suivante :

• Première étape : Dans la première équation on exprime l’une des variables, x par exemple, en
fonction des deux autres variables. On remplace ensuite dans les deux autres équations

x = 2− 2y − 2z

2− 2y − 2z + 3y − 2z = 2 + y − 4z = −1

3(2− 2y − 2z) + 5y + 8z = 6− y + 2z = 8

=⇒


x = 2(1− y − z)

y − 4z = −3

−y + 2z = 2

• Deuxième étape : On remplace maintenant dans la deuxième équation y en fonction de z
x = 2(1− y − z)

y = −3 + 4z

3− 4z + 2z = 3− 2z = 2

=⇒


x = 2(1− y − z)

y = −3 + 4z

2z = 1
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• Troisième étape : On peut maintenant donner les valeurs de toutes les variables, en partant de la
troisième ligne et en remontant 

x = 2(1 + 1− 1

2
) = 3

y = −3 + 4
1

2
= −1

z =
1

2

3 Méthode du Pivot de Gauss

La méthode du Pivot de Gauss permet de transformer le système initial en un autre système équivalent, ayant
les mêmes solutions, mais qui est plus facile à résoudre. On cherche à obtenir un système dit triangulaire,
c’est-à-dire dont une ligne ne contient qu’une variable, la deuxième ligne deux, etc.

Les opérations autorisées pour transformer le système sont les suivantes :

• Échange de deux lignes

• Multiplication d’une ligne par un nombre non nul

• Addition d’un multiple d’une ligne au multiple d’une autre ligne

L’idée de la méthode est d’isoler successivement chacune des variables.

Exemple 2.3
La résolution du système de l’exemple 1.1 peut se faire de la manière suivante :

x+ 2y + 2z = 0 (L1)

y − 4z = −3 (L′2 → L2 − L1)

−y + 2z = 2 (L′3 → L3 − 3L1)

On a éliminé la variable x des lignes L2 et L3. Il faut maintenant par exemple éliminer la variable y de la
troisième ligne, et alors on aura triangularisé le système.


x+ 2y + 2z = 0 (L1)

y − 4z = −3 (L′2)

−2z = −1(L′′3 → L′3 + L′2)

=⇒


x = −2y − 2z = 3

y = 4z − 3 = −1

z =
1

2

On a déterminé les valeurs des trois variables : le système est résolu !

4 Changement de variable

Il peut arriver qu’un système ne fasse pas intervenir directement la variable x mais par exemple x2, | x |,√
x, etc. On doit alors faire un changement de variable.

Exemple 2.4
Résoudre le système

 x2 + y2 = 5

x2 − y2 = 3

Remarque 2.1
Dans les problèmes concrets, selon le problème à résoudre, toutes les solutions ne seront pas ”acceptables”.
Par exemple si x et y représentent une quantité de matière, x et y doivent nécessairement être positifs.

Remarque 2.2
Il faudra toujours faire bien attention aux domaines de définition des variables (notamment si on a des
racines ou des inverses).
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5 Écriture des solutions

Soit par exemple le système suivant :  x2 + y = 3

x2 − y = −1

La résolution de ce système donne x = ±1 et y = 2 (vérifiez-le !).

Il faut écrire toutes les solutions possibles pour le couple (x, y). On peut écrire ces solutions de deux manières :

• Sous la forme d’un système :  x = 1

y = 2
ou

 x = −1

y = 2

• Sous la forme des couples (x, y) :
(x, y) ∈ {(1, 2); (−1, 2)}

Quand il n’y a pas d’ambigüıté possible, l’ordre alphabétique prévaut et on peut noter :

S = {(1, 2); (−1, 2)}

6 Un système a-t-il toujours une solution ?

On dit qu’un système peut être résolu s’il a un nombre fini de solutions.
C’est le cas des systèmes précédents.

Il existe deux autres cas : les systèmes avec une infinité de solutions et les système sans solution.

6.1 Systèmes sans solutions

Il s’agit des systèmes dont deux lignes au moins sont incompatibles, ce qui conduit à plusieurs valeurs
contradictoires pour une même variable, ou à des absurdités.

Exemple 2.5
Montrer que le système suivant n’a aucune solution :

x+ y + z = 1

x+ y + 2z = 1

x+ y = 3

Il est facile de déterminer si un système linéaire 2× 2 a une solution en calculant son déterminant.
Soit le système suivant, où les inconnues sont x et y :

(S) :

 α1x+ β1y = γ1

α2x+ β2y = γ2

Le déterminant de ce système est detS = α1β2 − α2β1 et le système a une unique solution si et seulement
si detS 6= 0.

6.2 Systèmes linéaires avec une infinité de solutions

Ce sont les systèmes qui ont plus d’inconnues que d’équations.
Si un système comporte p inconnues et n équations avec n < p, alors on peut souvent exprimer n inconnues
en fonction des p− n autres, qui sont alors appelée paramètres.

Exemple 2.6
Déterminer l’ensemble des solutions du système suivant : x+ 2y − 5z = 0

2x− y = 0
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7 Exercices du chapitre 2

Exercice 2.1
Résoudre si possible les systèmes suivants :

1.

 3x− 4y = 1

x+ 5y = 2

2.

 2x+ 3y = −4

3x+ 2y = −1

3.

 3x− 2y = 4

−6x+ 4y = −9

4.


5x− 30y =

15

2
2

3
x− 4y = 1

5.

 3x− 2y = 1

−6x+ 3y = −2

6.

 2x+ 3y = 64

3x+ 2y = −1

7.



x+ y + 2z − 4t = 4

2x− y + 3z = 9

x− 3y + 2z = 1

3x− 2y + 4z = 11

8.


x+ 10y − 3z = −1

2x− y + 2z = 4

−x+ y + z = −1

9.


x+ y + z = 5

x+ 2y − 3z = −7

2

−6x+ 2y + 5z =
19

2

10.


x+ y + 2z = 0

2x+ 2y + z = −3

x+ 3y − z = −1

11.


x+ y + 2z = 0

3x− 4y = 1

x+ 5y = 0

12.

 x+ y + z = 0

x− 3y + 4z = 13

13.


5x− 30y =

15

2

2x+ 2y + 4z = −3
3

2
x− 4y = 1

14.



x+ y + 2z − 4t = 4

x− 3y + z − 2t+ 13 = 0

2x+ 2y − z + t = 0

3x+ y + 3z + 2t− 4 = 0

15.



2x+ y + 3z − 4t = 16

3x+ 2y + z + 4t = 15

x+ y + 3z + 4t = 3

4x+ 3y + 2z = 2

Exercice 2.2
Résoudre les systèmes suivants en utilisant un changement de variable :

1.

 7x2 − 9y2 = 5

−3x2 + 5y2 = −1

2.

 7|x| − 9|y| = 5

−3|x|+ 5|y| = −1

3.


4

x− 2
+

7

y + 1
= 3

5

x− 2
+

9

y + 1
= 2

4.

 −2
√
x+ 2

√
y + 1 = 3

−
√

4x+ 3
√
y + 1 = 13

5.

 2
√
x+ 2

√
y + 1 = 3

√
4x+ 3

√
y + 1 = 13

6.

 −|x|+ 7
√
y + 1 = 3

−5|x|+ 9
√
y + 1 = 2

Exercice 2.3
Trouver une fraction telle que si on ajoute 3 à chacun de ses termes, on obtient une fraction égale à

4

5
et
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que, si on retranche 3 à chacun de ses termes, on obtient une fraction égale à
1

2
.

Exercice 2.4
Le périmètre d’un champ rectangulaire est de 260 m. Si l’on augmente la plus petite dimension de 10 m et
que l’on diminue la plus grande de 10 m, l’aire du champ augmente de 200 m2.

Calculer les dimensions du champ.

Exercice 2.5
On considère un repère cartésien à deux dimensions dans lequel chaque point est repéré par ses coordonnées
(x, y).
On cherche le point d’intersection des deux droites suivantes :
- (D1) d’équation 3x+ y = −1
- (D2) d’équation −4x+ 2y = 8

1. Trouver les coordonnées de ce point en résolvant un système d’équation.

2. Vérifier graphiquement votre solution.

Exercice corrigé 2.1
Jean possède 5800 euros de plus que Jacques. Jean dépense les

4

9
de son avoir et Jacques les

2

5
du sien. Il

reste alors à Jean deux fois plus d’argent qu’à Jacques.
Combien chacun possédait-il ?

On note x la somme d’argent de Jean et y celle de Jacques. x et y vérifient le système suivant :
x = y + 5800

5

9
x = 2

3

5
y

=⇒

 y = 5000 euros

x = 10800 euros

Exercice corrigé 2.2
Un rayon de bibliothèque de 1, 5 m de long est entièrement occupé par 38 livres rangés côte à côte. Certains
livres ont 3 cm d’épaisseur, les autres ont 5 cm d’épaisseur.
Quel est le nombre de livres de chaque épaisseur ?

On note x le nombre de livres de 3 cm d’épaisseur et y le nombre de livres de 5 cm d’épaisseur.

On a :

 x+ y = 38

3x+ 5y = 159
=⇒

 x = 18

y = 20
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3Polynômes
Chapitre 3

1 Introduction

Vous avez déjà rencontré au lycée les fonctions polynômiales. Ce sont les fonctions de la forme :

x 7→ a0 + a1x+ ...+ anx
n

Exemple 3.1
x 7→ x2 + 2x3 + 7

On se place dans tout ce chapitre dans l’ensemble des nombres réels R ou des nombres complexes C.
On donnera donc en général les définitions dans C, mais gardez bien en tête que l’on inclut alors l’ensemble
des réels !

2 Définitions

Soit un ensemble K (K = N,R,C, ...).
On appelle polynôme à coefficients dans K toute expression de la forme :

P (X) = a0 + a1X + a2X
2 + ... =

∑
k≥0

akX
k avec ∀kak ∈ K

pour laquelle les termes sont tous nuls à partir d’un certain rang (c’est-à-dire d’un certain n).

Le plus grand entier n pour lequel an 6= 0 est le degré du polynôme. On note deg(P ) = n.
Autrement dit, ∀k > n , ak = 0.

• X est appelée indéterminée du polynôme.

• Le nombre ak est le coefficient du terme de degré k.

• Le terme akX
k est un monôme de degré k. Un polynôme est donc une somme de monômes.

• L’ensemble des polynômes à coefficients dans K est noté K[X].
Par exemple, l’ensemble des polynômes dont les coefficients ak sont des complexes est noté C[X].

Exemple 3.2
P (X) = 1+3X2 +5X4 est un polynôme de degré 4 à coefficients réels. Il appartient donc à l’ensemble R[X].
Son coefficient de degré 2 et égal à 3. sont coefficient de degré 3 est nul.
Le monôme de degré 4 est 5X4.
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Polynôme nul :

Soit le polynôme P (X) =
∑
k≥0

akX
k. P (X) est le polynôme nul si et seulement si tous ses coefficients sont

nuls :
P est le polynôme nul ⇐⇒ ∀k ak = 0

Par convention le polynôme nul est de degré −∞.

Égalité de deux polynômes :

Soient deux polynômes A(X) =
∑
k≥0

akX
k et B(X) =

∑
k≥0

bkX
k.

Ces deux polynômes sont égaux si et seulement si tous leurs coefficients sont égaux :

A = B ⇐⇒ ∀k ak = bk

Deux polynômes égaux sont donc bien évidemment de même degré :

A = B =⇒ degA = degB

Exemple 3.3
Identifier les coefficients a, b, c, d, e vérifiant légalité suivante :

x2 − 3x3 + 2x− 1 + 4x4 = ax4 + bx3 + cx2 + dx+ e

3 Opérations sur les polynômes

3.1 Multiplication d’un polynôme par un scalaire

Soit A(X) =
∑
k≥0

akX
k un polynôme à coefficients complexes.

Soit un nombre complexe non nul λ 6= 0.
La multiplication de A par λ est le polynôme B = λA défini par :

B(X) = λA(X) =
∑
k≥0

bkX
k avec ∀k bk = λ× ak

Les deux polynômes sont donc de même degré :

deg(λA) = degA

Exemple 3.4
Soit P (X) = 1 + 3X2 + 5X4. Le polynôme Q = 2P est défini par Q(X) = 2 + 6X2 + 10X4.

3.2 Addition de deux polynômes

Soient deux polynômes A(X) =
∑
k≥0

akX
k et B(X) =

∑
k≥0

bkX
k.

Soit S = A+B le polynôme obtenu en sommant ces deux polynômes.
S est défini par :

S(X) =
∑
k≥0

skX
k avec ∀k sk = ak + bk

On ne peut pas exprimer de manière générale le degré du polynôme somme en fonction des degrés des
polynômes A et B car il se peut que des monômes venant de l’un et l’autre s’annulent. On peut juste dire le
polynôme somme est de degré inférieur ou égal au degré du polynôme de plus haut degré intervenant dans
la somme :

degS ≤ max(degA ; degB)
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Exemple 3.5
Soient les polynômes A(X) = 2X + 3X2, B(X) = 1−X3, C(X) = 2 +X2 +X3 :

• (A+B)(X) = 1 + 2X + 3X2 −X3

• (B + C)(X) = 3 +X2 est de degré 2 bien que B et C soient tous deux de degré 3.

• (A+ C)(X) = 2 + 2X + 4X2 +X3

3.3 Multiplication de deux polynômes :

Soient deux polynômes A(X) =
∑
k≥0

akX
k et B(X) =

∑
k≥0

bkX
k.

Soit R = AB le produit de ces deux polynômes.
R est défini par :

R(X) =
∑
k≥0

rkX
k avec ∀k rk =

∑
i+j=k

ai × bj

Le degré du polynôme produit est la somme des degrés des polynômes intervenant dans la somme :

deg(R) = deg(A) + deg(B)

Exemple 3.6
Soient les trois polynômes P (X) = 2 +X + 3X2, Q(X) = 1 + 5X + 4X2 + 6X3 et H(X) = −X +X6.
Déterminer PQ, PH et QH.

3.4 Division par puissances décroissantes

3.4.1 Exemple introductif

Faire la division par puissances décroissantes de A(X) = −6X + 1 + 4X3 par B(X) = X − 1 +X2.

3.4.2 Méthode générale

Soient deux polynômes A(X) =
∑
k≥0

akX
k et B(X) =

∑
k≥0

bkX
k.

Diviser A par B par puissance décroissantes, c’est trouver deux polynômes Q (quotient) et R (reste) tels
que :

A(X) = B(X)Q(X) +R(X) avec degR < degB

Q(X) est le quotient de la division, et R(X) est le reste de cette division.
On démontre que R et Q ne peuvent être simultanément nuls.

Pour faire la division, on commence par ordonner les deux polynômes par puissances décroissantes puis on
pose la division de A par B comme une division classique (faire appel à vos souvenirs de primaire !).

A(B) B(X)
... Q(x)
...

R(X)

On dit que B divise A si le reste est nul.

Remarque 3.1
Cette division n’a d’intérêt que si deg(A) ≥ deg(B) (sinon Q est le polynôme nul).

Exemple 3.7
Faire la division par puissances décroissantes de −x5 − x4 + x2 + x par x+ x2.
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3.5 Division selon les puissances croissantes

3.5.1 Exemple introductif

Faire la division par puissances croissantes de A(X) = −6X + 1 + 4X2 par B(X) = X − 1 +X2 à l’ordre 2.

3.5.2 Méthode générale

Soient deux polynômes A(X) =
∑
k≥0

akX
k et B(X) =

∑
k≥0

bkX
k.

Diviser A par B par puissances croissantes à l’ordre n, c’est trouver deux polynômes Q et R tels que :

A(X) = B(X)Q(X) +R(X)

• degQ < N

• R(X) peut être factorisé par Xn+1 : R(X) = Xn+1R̃(X)

Q(X) est le quotient de la division, et R(X) est le reste de cette division à l’ordre n.

Pour faire cette division, on commence par ordonner les polynômes par puissances croissantes.
La technique pour réaliser cette division est la même que pour les divisions classiques. On s’arrête dès que
le reste peut-être factorisé par Xn+1. Cette division ne s’arrête à priori jamais, et c’est l’utilisation que l’on
fera du résultat qui impose l’ordre auquel on décide de s’arrêter.

A(B) B(X)
... Q(x)
...

R(X)

↑

factorisable par Xn+1

Exemple 3.8
Faire la division par puissances croissantes à l’ordre 3 de 1 + x par x2 + 1.

4 Racines des polynômes et factorisation

4.1 Introduction à la factorisation

Factoriser un polynôme, c’est le mettre sous la forme d’un PRODUIT de facteurs de la forme “(X - un
nombre)” ou “(aX2 + bX + c)” avec a, c, b ∈ R si le discriminant de ce dernier polynôme est négatif (dans le
cas de la factorisation dans R).

Exemple 3.9
• 2x3 − 4x− 10x+ 12 = 2(x− 1)(x+ 2)(x− 3)

• x3− 1

2
x2 +x− 1

2
= (x2 +1)

(
x− 1

2

)
: c’est une forme factorisée dans R car x2 +1 a un discriminant

négatif.

Par contre dans C la factorisation serait (x+ i)(x− i)
(
x− 1

2

)
• x2 − x+ 1 = (x+ 1)(x− 2) + 3 n’est PAS une forme factorisée, à cause du “+3”.

• −x3 + 2x2 + x− 2 = −(x− 1)(x2 − x− 2) n’est PAS une forme factorisée car le polynôme x2 − x− 2
a un discriminant positif et peut donc être lui même factorisé.
La forme factorisée est −(x− 1)(x+ 1)(x− 2).
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4.2 Rappels pour les polynômes du second degré

Vous connaissez déjà les définition des racines d’un polynôme du second degré et de sa factorisation.
Soit le polynôme P (X) = aX2 + bX + c avec a, b, c ∈ C.

• Les racines du polynômes sont les nombres qui annulent le polynôme : X0 est une racine si P (X0) = 0.
La détermination de ces racines se fait en calculant le discriminant. Un polynôme du second degré
possède deux racines simples ou une racine double dans R.

• Factoriser le polynôme, c’est le mettre sous la forme d’un produit de termes de la forme “(X −X0)”.
Dans le cas où P possède deux racines distinctes X1 et X2, cette factorisation est :

P (X) = a(X −X1)(X −X2)

Dans le cas où P possède une racine double (discriminant nul),cette factorisation est :

P (X) = a(X −X0)2

Exemple 3.10
Factoriser le polynôme A(x) = 3x2 − 4x+ 1.

4.3 Racines d’un polynôme

4.3.1 Racine

Définition :

Soit un polynôme P ∈ C[X].
On dit que X0 est une racine de P si :

P (X0) = 0

Les racines peuvent être des nombres réels ou complexes.

Si X0 est une racine de P , alors il existe un polynôme Q de degré n− 1 tel que :

P (X) = (X −X0)Q(X)

Exemple 3.11
Montrer que 1 est une racine du polynôme A(X) = X3 +X2 +X − 3 et déterminer le polynôme B(X) tel
que A(X) = (X − 1)B(X).

Propriétés :

1 Tout polynôme de degré supérieur ou égal à 1 possède au moins une racine complexe.

2 Soit un polynôme à coefficients réels. Si ce polynôme admet une racine complexe, alors le
conjugué de cette racine est également une racine.
Ainsi pour un polynôme à coefficients réels il y a nécessairement un nombre pair de racines
complexes.

4.3.2 Ordre de multiplicité d’une racine
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4.3.3 Définition :

Soit un polynôme A de degré n et X0 est une racine de A.
Le plus grand entier ν tel que A(X) est divisible par (X − X0)ν est appelé ordre de multiplicité de la
racine X0 :

A(X) = (X −X0)νB(X) et B(X0) 6= 0

• Si ν = 1 on dit que X0 est une racine simple (ou d’ordre 1) ;

• Si ν = 2 alors X0 est une racine double (ou d’ordre 2) ;

• Si ν = 3 alors X0 est une racine triple (ou d’ordre 3) ;

• etc...

La somme des ordres de toutes les racines est égale au degré du polynôme :

A(X) =

n∏
i=1

an(X −Xi)
νi =⇒

n∑
i=1

νi = n

Cela signifie qu’un polynôme de degré 4 par exemple a nécessairement 4 racines simples, ou 2 racines racines
doubles, ou une racine simple et une racine triple.

Propriété :

X0 est une racine d’ordre ν du polynôme A ⇔ A(X0) = A′(X0) = ...A(ν−1)(X0) = 0

On peut utiliser cette propriété pour déterminer l’ordre d’une racine.

Exemple 3.12
Déterminer les racines des polynômes suivants et leur multiplicité :

• A(x) = x3 − 3x+ 2

• B(x) = x4 − 4x3 + 6x2 − 4x+ 1

4.4 Factorisation d’un polynôme

4.4.1 Cas général de la factorisation dans C

Soit un polynôme P de degré n, possédant des racines Xi de multiplicité νi, et dont le coefficient du terme
de degré n est an.

Factoriser le polynôme P , c’est le mettre sous la forme :

P (X) = an
∏
i

(X −Xi)
νi

Exemple 3.13
Soit le polynôme P (X) = 3X3 − 6X2 + 3X − 6.

• On trouve comme racines 2, i et −i.
• Le coefficient du terme de plus haut degré est 3.

Donc la factorisation de ce polynôme est :

3X3 − 6X2 + 3X − 6 = 3(X − 2)(X + i)(X − i)
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4.4.2 Cas de la factorisation dans R des polynômes de R[X]

Exemple introductif :

Factoriser dans R le polynôme A(X) = 3X3 − 3X2 + 12X − 12.

Définition :

Soit P un polynôme à coefficients réels.
Les racines complexes des polynômes à coefficients rééls sont nécessairement complexes conjuguées, donc si
on note X0 et X0 ces racines, on peut mettre P (X) sous la forme :

P (X) = Q(X)(X −X0)(X −X0)

Pour la factorisation dans R on ne veut pas voir apparaitre les racines complexes, donc on laisse (X −
X0)(X −X0) sous la forme d’un polynôme du second degré irréductible dans R :

P (X) = Q(X)(X2 + |X0|2 − 2X<(X0))

Exemple 3.14
Soit le polynôme Q(X) = 2X3 + 6X2 + 8X + 4.

• −1 est une racine évidente.

• La division par puissance décroissante de 2X3 + 6X2 + 8X + 4 par X + 1 donne X2 + 2X + 2. Ce
polynôme de degré 2 a deux racines complexes : −1 + i et −1− i
• Le coefficient du terme de plus haut degré est 1.

Donc dans C, la factorisation de ce polynôme est :

2X3 + 6X2 + 8X + 4 = (X + 1)(X + 1− i)(X + 1 + i)

Et dans R, la factorisation de ce polynôme est :

2X3 + 6X2 + 8X + 4 = (X + 1)(X2 + 2X + 2)
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5 Exercices du chapitre 3

Exercice 3.1
Soit un polynôme P ∈ C[X] de degré N vérifiant l’équation suivante :

P (X2) = (X2 + 1)P (X)

On note ai le coefficient du monôme de degré i, si bien que l’on peut écrire P (X) =
N∑
i=0

aiX
i.

1. Déterminer les degrés des polynômes Q(X) = P (X2) et R(X) = P (X)(X2 + 1).

2. Montrer que l’on a nécessairement N = 2.

3. Déterminer l’ensemble des polynômes solutions de l’équation.

Exercice 3.2
Soit le polynôme P ∈ C[X] de degré 3 vérifiant 3P (X) = (X + 1)P ′(X).

Déterminer les solutions de cette équation.

Exercice 3.3
Dans chacun des cas suivants, donner le quotient et le reste de la division par puissances décroissantes de
A(X) par B(X) et préciser si B divise A.

1. A(X) = X4 + 12X2 + 5X3 − 7 + 19X et B(X) = X2 − 1 + 3X.

2. A(X) = X4 − 9X2 − 4X3 + 27X + 38 et B(X) = X2 − 7−X.

3. A(X) = X5 + 2− 2X2 et B(X) = X2 + 1.

Exercice 3.4
Effectuer les divisions par puissances décroissantes suivantes :

1. 4X5 − 2X4 + 5X3 + 4X + 2 par X2 + 1.

2. −2X5 − 2X4 −X3 + 4X2 + 4X + 3 par X2 +X + 1.

3. −X6 + 3X2 − 4X + 1 par X7 − 4X5 + 1.

4. 2X4 − 3X3 + 4X2 − 5X + 6 par X2 − 3X + 1

Exercice 3.5
Déterminer λ pour que x4 − 5x2 + 4x− λ soit divisible par 2x+ 1.
Trouver le quotient.

Exercice 3.6
Soient les polynômes P et Q définis par :

P (x) = 4x2 − 5x3 − x5 + 3x4 − 2 Q(x) = x− 2− x2

1. Faire la division par puissances décroissantes de P (x) par Q(x).

2. Q divise-t-il P ?

Exercice 3.7
Soit P (x) = 6x3 − 2x2 −mx− 2. Déterminer m sachant que P (x) est divisible par :

1. x+ 1 2. 2x− 6

Exercice 3.8
Soient a, b ∈ C.
Trouver une condition sur a et b pour que le polynôme P1(X) = X2 + 2 divise le polynôme P2(X) =
X4 +X3 + aX2 + bX + 2.

Astuce : Poser la forme générale du polynôme quotient.
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Exercice 3.9
Effectuer les divisions par puissances croissantes suivantes :

1. X6 − 2X4 + 1 +X3 par X3 +X2 + 1 à l’ordre 5.

2. X4 − 2X + 1 +X3 par X2 +X + 1 à l’ordre 2, puis à l’ordre 3.

3. 3 +X − 2X3 par 3 +X à l’ordre 4.

4. 1 +X par 1 +X4 −X2 à l’ordre 2.

Exercice 3.10
(Cet exercice est inspiré d’un TD de Dimensionnement et Opérations Unitaires de 2ème année).

Dans le système suivant, déterminer les valeurs de x1 et y1, qui représentent des fractions molaires (donc
comprises entre 0 et 1) : 

y1 =
αx1

1 + (α− 1)x1

x0 + y2
V

L
= x1 + y1

V

L

Avec :

• α = 2, 59

• V = 300 mol/h

• L = 150 mol/h

• x0 = 0, 961

• y2 = 0, 535

Exercice 3.11
Factoriser les polynômes suivants :

1. B(X) =
1

2
X2 +X − 4 dans R.

2. A(X) = 2X3 + 3X2 − 10X dans R.

3. P (X) = X4 − 3X2 − 4 dans C et dans R.

4. Q(X) = X3 − iX2 +X − i dans C.

5. R(X) = X3 + 1 dans C.

6. S(x) = x4 − i dans C.

Exercice 3.12
Dans chacun des cas suivants, déterminer la multiplicité de la racine X0 du polynôme P et donner la
factorisation de P :

1. P (X) = X4 −X3 − 3X2 + 5X − 2 et X0 = 1.

2. P (X) = X3 − iX2 +X − i et X0 = i.

Exercice 3.13
Factoriser le polynôme P (X) = X4 − 2X3 + 2X − 1.

Exercice 3.14
Factoriser les polynômes suivants :

1. X5 + 3X4 + 4X3 + 4X2 + 3X + 1 dans R[X].

2. 2X3 − 2iX2 + 2X − 2i dans C[X].

3. X6 + 1 dans C[X].

4. X3 + 4X dans R[X] et dans C[X].

Exercice 3.15
Montrer que pour tout n ≥ 2, (x+ 1)2n − x2n − 2x− 1 est divisible par x(x+ 1)(2x+ 1).

Exercice 3.16
Montrer que xn+1 − xn − x+ 1 est divisible par (x− 1)2.
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Exercice 3.17
Une entreprise fabrique une quantité p d’un produit, compris dans l’intervalle [0; 20].
Le coût de production, exprimé en milliers d’Euros, est donné par :

c : p 7→ c(p) = p3 − 30p2 + 300p

Chaque produit est vendu à un prix de 84000 euros.

1. Exprimer en fonction de p le chiffre d’affaire total r(p) en milliers d’euros.

2. Exprimer en fonction de p le bénéfice b(p) = r(p)− c(p).
3. Déterminer les racines du polynôme b.

4. Déterminer à quelle condition l’entreprise est rentable.

Exercice 3.18
(Inspiré d’un TD de Chimie du semestre 1).
L’acide oxalique est un diacide que l’on notera H2A. Ses pKa valent pKaA1 = 1, 20 et pKA2 = 4, 30. On
veut calculer le pH de différentes solutions de cet acide.

Concentrations :

• La concentration de la forme acide est notée [H2A].

• La concentration de la forme amphotère est notée [HA−].

• La concentration de la forme basique est notée [A2−].

• La concentration en ions H3O
+ est notée h.

• La concentration en ions HO− est notée ω.

• la concentration totale en diacide est notée c.

On rappelle les définitions des pKa :

• Ka1 =
h[HA−]

[H2A]
et pKa1 = − logKa1

• Ka2 =
h[A2−]

[HA−]
et pKa2 = − logKa2

• Ke = hω et pKe = − logKe = 7

On rappelle que le pH de la solution est donné par pH = − log h où h est exprimé en mol/L.

On a une solution avec une concentration initiale d’acide oxalique de 0,0100 mol/L, ce qui laisse supposer
une prédominance de la forme acide et un comportement de monoacide. Dans ces conditions :

• Un bilan de matière aboutit à la relation c = [H2A] + [HA−]

• Un bilan sur les charges aboutit à la relation h = [HA−]

1. Montrer que l’on a alors h2 +Ka1h−Ka1c = 0.

2. Résoudre cette équation afin de déterminer h. En déduire le pH.

Exercice corrigé 3.1
Montrer que nxn+1 − (n+ 1)xn + 1 est divisible par (x− 1)2.

On calcule n× 1n+1 − (n+ 1)× 1n + 1 = n− (n+ 1) + 1 = 0 donc nxn+1 − (n+ 1)xn + 1 est divisible par x− 1.
La division donne :

nx
n+1 − (n+ 1)x

n
+ 1 = (x− 1)(nx

n − xn−1 − xn−2 − xn−3
...− 1)

On chercher si ce quotient est lui même divisible par x− 1. On calcule :

n× 1
n − 1

n−1 − 1
n−2 − 1

n−3
...− 1︸ ︷︷ ︸ = n− n× 1 = 0

ntermes

donc nxn − xn−1 − xn−2 − xn−3...− 1 est bien divisible par x− 1.

On a donc montré que nxn+1 − (n+ 1)xn + 1 est divisible par (x− 1)2.

Exercice corrigé 3.2
Soit P (X) = 6X3 − 2X2 −mX − 2.
Déterminer m sachant que P (X) est divisible par X + 1.
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On pose la division :

X3 −2X2 −mX −2 X +1

−(6X3 +6X2) 6X2 −8X −m+ 8

−8X2− −mX −2

−(−8X2 −8X)

(−m+ 8)X −2

−(−m+ 8)X −m+ 8

m− 10

X + 1 divise P (X) si le reste est nul, ce qui n’est possible que si m− 10 = 0 =⇒ m = 10 .

Exercice corrigé 3.3
On mélange en volumes égaux une solution d’acide chlorhydrique à 0,01 mol/L avec une solution d’acide
acétique à 0,1 mol/L.
Alors la concentration en ions H3O

+, notée c, obéit à l’équation suivante :

c2 + 0, 01c− 1, 8.10−6 = 0

Calculer le pH de la solution.

On rappelle que pH = − log c.

On calcule le discriminant de cette équation du second degré :

∆ = 0, 01
2

+ 4× 1, 8.10
−6

= 1, 072.10
−4

= (0, 01035)
2

Formellement, cette équation a deux racines :

c1 =
−0, 01− 0, 01035

2
= −0, 020 et c2 =

−0, 01 + 0, 01035

2
= 3, 54.10

−4

Mais comme c représente une concentration, elle est nécessairement positive, donc c = 3, 54.10−4.

On calcule alors pH = − log(3, 54.10−4) =⇒ pH = 3, 45

Exercice corrigé 3.4
Factoriser dans R :

1. −X2 + 2X − 1 2. X2 − 1 3. X4 − 1 4. −X8 + 2X4 − 1

1. On reconnâıt une identité remarquable : −X2
+ 2X − 1 = −(X − 1)

2

2. X
2 − 1 = (X + 1)(X − 1)

3. On pose Y = X2 :

X
4 − 1 = Y

2 − 1 = (Y + 1)(Y − 1) = (X
2

+ 1)(X
2 − 1) =⇒ X

4 − 1 = Y
2 − 1 = (X

2
+ 1)(X + 1)(X − 1)

4. On pose Z = X4 :

−X8 + 2X4 − 1 = −Z2 + 2Z − 1 = −(Z − 1)2 = −(X4 − 1)2 = −
(
(X2 + 1)(X + 1)(X − 1)

)2
=⇒ −X8

+ 2X
4 − 1 = −(X

2
+ 1)

2
(X + 1)

2
(X − 1)

2

Exercice corrigé 3.5
Soit P (x) = (x+ 1)7 − x7 − 1 et j = ei

2π
3 .

1. Quel est le degré de P ?

2. Montrer que 1 + j = −j2

3. Montrer que j est une racine de P et déterminer sa multiplicité.

4. En déduire que e−i
2π
3 est également une racine et donner sa multiplicité.

5. Trouver deux racines réelles évidentes de P .

6. Donner la factorisation de P dans C.

1. Le premier terme du développement de (x+ 1)7 est x7. Ce terme s’annule avec le suivant, donc P est un polynôme de degré 6.
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2. • j2 =
(
ei

2π
3

)2
= ei

4π
3 = −i

√
3

2
−

1

2

• 1 + j = 1 + ei
2π
3 = 1 +

√
3

2
i−

1

2
=

√
3

2
i+

1

2

On a donc bien 1 + j = −j2 =

√
3

2
i+

1

2

3. P (j) = (j + 1)7−j7−1 = (−j2)7−j7−1 = −j14−j7−1 = −ei
28π
3 −ei

14π
3 −1 = −ei

4π
3 −ei

2π
3 −1 =

1

2
+

√
3

2
i+

1

2
−
√

3

2
i−1 = 0

donc j est bien une racine de P .

On utilise la méthode des dérivées pour trouver sa multiplicité :

• P ′(j) = 7(1 + j)6 − 7j6 = 7j12 − 7j6 = 7j6(j6 − 1) = 7ei
12π
3

(
ei

12π
3 − 1

)
= 0 car ei

12π
3 = 1

• P ′(j) = 42(1 + j)5 − 42j5 = −42j10 − 42j5 = −42j5(j5 + 1) = −42ei
10π
3

(
ei

10π
3 − 1

)
= −42ei

4π
3

(
ei

4π
3 − 1

)
6= 0

car ei
4π
3 = −

1

2
−
√

3

2
i

La dérivée première est la première dérivée qui ne s’annule pas en j, donc j est une racine d’ordre 2.

4. P étant un polynôme à coefficients réels, si j est une racine double, alors j est également une racine double.

Donc e−i
2π
3 est une racine double de P .

5. 0 et −1 sont deux racines de P .

6. On a trouvé les 6 racines de P , donc on peut directement écrire sa factorisation :

P (x) = 7x(x+ 1)
(
x− ei

2π
3

)2 (
x− e−i

2π
3

)2

Exercice corrigé 3.6
Trouver le reste et le quotient de la division du polynôme 7x4− 3x3− 2x2 + x− 5 par successivement x− 3,
x+ 2, 2x− 3 et 3x+ 1.

• 7x4 − 3x3 − 2x2 + x− 5 = (x− 3)(7x3 + 18x2 + 52x+ 157) + 466

• 7x4 − 3x3 − 2x2 + x− 5 = (x+ 2)(7x3 − 17x2 + 32x− 63) + 121

• 7x4 − 3x3 − 2x2 + x− 5 = (2x− 3)(
7

2
x3 +

15

4
x2 +

37

8
x+

119

16
) +

277

16

• 7x4 − 3x3 − 2x2 + x− 5 = (3x+ 1)(
7

3
x3 −

16

9
x2 −

2

27
x+

29

81
)−

434

81

Exercice corrigé 3.7
Calculer le quotient et le reste de la division de x28 + a28 par x4 − a4 où a est une constante quelconque.

x24 − a24 = (x4 − a4)(x24 + a4x20 + a8x16 + a12x12 + a16x8 + a20x4 + a24) =
6∑
k=0

x4ka24−4k
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4Fractions rationnelles
Chapitre 4

1 Fractions rationnelles

1.1 Définition

Une fraction rationnelle F (X) s’écrit sous la forme F (X) =
N(X)

D(X)
où N et D sont deux polynômes de

degrés quelconques, D n’étant pas le polynôme nul.

• D est appelé dénominateur de la fraction rationnelle

• N est appelé numérateur de la fraction rationnelle

Une fraction rationnelle est donc finalement définie comme le quotient de deux polynômes.

Exemple 4.1
• F (X) =

X2

3X + 1

• F (X) =
1

(X − 2)(X + 3)
• F (X) =

X3

X7 +X4 − 1

1.2 Opérations sur les fractions rationnelles

Soient deux fractions rationnelles F1(X) =
N1(X)

D1(X)
et F2(X) =

N2(X)

D2(X)
.

1.2.1 Addition de deux fractions rationnelles

(F1 + F2)(X) = F1(X) + F2(X) =
N1(X)

D1(X)
+
N2(X)

D2(X)
=
N1(X)D2(X) +N2(X)D1(X)

D1(X)D2(X)

Il s’agit de mettre les deux fractions sous le même dénominateur.

Exemple 4.2
• X

X2 + 1
− X − 1

X + 3
=
X(X + 3)− (X − 1)(X2 + 1)

(X2 + 1)(X + 3)
=
−X3 + 2X2 + 2X + 1

X3 + 3X2 +X + 3

• 1

X2 − 1
+

2X

X + 1
=

1 + 2X(X − 1)

X2 + 1
=

2X2 − 2X + 1

X2 + 1
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1.2.2 Multiplication de deux fractions rationnelles

(F1 × F2)(X) = F1(X)× F2(X) =
N1(X)

D1(X)
× N2(X)

D2(X)
=
N1(X)×N2(X)

D1(X)×D2(X)

Exemple 4.3

X

X2 + 1
× X − 1

X + 3
=

X2 −X
X3 + 3X2 +X + 3

1.2.3 Simplification d’une fraction et fraction irréductible

Si le numérateur et le dénominateur ont au moins une racine commune, alors la fraction rationnelle peut
être simplifiée.
Dans ce cas, on peut trouver un polynôme R(X) tel que N(X) = Ñ(X)R(X) et D(X) = D̃(X)R(X).
On peut alors simplifier la fraction F (X) :

F (X) =
N(X)

D(X)
=
Ñ(X)

D̃(X)

Si D̃ et Ñ n’ont aucune racine commune, alors on a simplifié F au maximum, et on dit que
Ñ(X)

D̃(X)
est une

fraction rationnelle irréductible.

Exemple 4.4
Soit F (x) =

x3 + 2x2 − x− 2

2x3 − 3x2 − 2x+ 3
.

• La factorisation de x3 + 2x2 − x− 2 donne (x− 1)(x+ 1)(x+ 2)

• la factorisation de 2x3 − 3x2 − 2x+ 3 donne (x+ 1)(x− 1)(2x− 1)

On a donc F (x) =
x+ 2

2x− 1
.

1.3 Partie entière d’une fraction rationnelle

Soit la fraction rationnelle F (X) =
N(X)

D(X)
.

On note E(X) le quotient et R(X) le reste de la division par puissances décroissantes de N(X) par D(X) :

N(X) = D(X)× E(X) +R(X)

La fraction rationnelle se réécrit :

F (X) = E(X) +
R(X)

D(X)

• E(X) est appelé partie entière de F

• R(X)

D(X)
est une fraction irréductible telle que degR < degD.

Remarque 4.1
• degN < degD ⇒ E(X) = 0

• degN = degD ⇒ E(X) = lim
X→∞

F (X) = a ∈ C

Exemple 4.5
• Soit la fraction rationnelle

x2 + 4

x− 3
:

Le degré du numérateur étant supérieur à celui du dénominateur, la partie entière est non nulle.
La division par puissances décroissantes de x2 + 4 par x− 3 donne un quotient de x+ 3 et un reste
de 13.

Donc
x2 + 4

x− 3
= x+ 3 +

13

x− 3
. La partie entière est (x+ 3).
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• 2x2 + 4

x2 + 1
:

Le numérateur et le dénominateur étant de même degré, la partie entière est la limite de la fraction

en l’infini : lim
x→+∞

2x2 + 4

x2 + 1
= 2.

La partie entière est 2.

On a 2x2 + 4 = 2(x2 + 1) + 2 donc
2x2 + 4

x2 + 1
= 2 +

2

x2 + 1

1.4 Pôles et racines d’une fraction rationnelle

1.4.1 Racines d’une fraction rationnelle

Comme pour un polynôme, on dit que X0 est une racine de F si :

F (X0) = 0

Les racines de F sont bien évidemment les mêmes que les racines de N .

1.4.2 Pôles d’une fraction rationnelle

Soit une fraction rationnelle F (X) =
N(X)

D(X)
sous sa forme irréductible.

• Les racines du polynôme D (qui ne sont donc pas également des racines de N puisque la fraction est
irréductible) sont appelées pôles de la fraction rationnelle.
Donc Y0 est un pôle de F si :

D(Y0) = 0 et N(Y0) 6= 0

• Si Y0 est une racine de D d’ordre α, on dit que Y0 est un pôle d’ordre α.

Exemple 4.6
• X

(X + 1)(X2 + 1)
:

La factorisation du dénominateur donne (X + 1)(X2 + 1) = (X + 1)(X + i)(X − i).
Dans R : −1 est un pôle simple.
Dans C : −1, i et −i sont des pôles simples.

• X − 2

X(X2 − 1)2
:

La factorisation du dénominateur donne X(X2 − 1)2 = X(X + 1)2(X − 1)2.
Dans R et dans C : 0 est un pôle simple, 1 et −1 sont des pôles doubles.

2 Décomposition en éléments simples des fractions rationnelles

2.1 Pourquoi décomposer une fraction rationnelle ?

Décomposer une fraction rationnelle c’est l’écrire comme une somme d’autres fractions rationnelles, ce qui
la rend plus simple à étudier et/ou à utiliser.

Par exemple, on ne sait pas à priori calculer une primitive de la fonction f(x) =
5x2 − 12

x3 − 4x
.

Mais si on la met sous la forme f(x) =
3

x
+

2x

x2 − 4
(vérifier que c’est bien le cas !) les primitives se calculent

facilement : ∫
f(x) dx = 3 ln |x|+ ln |x2 − 4|+ cste

Les décompositions ne sont pas uniques. Par exemple pour la fraction rationnelle précédente on aurait pu

écrire f(x) =
3

x
+

1

x− 2
+

1

x+ 2
.
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La décomposition en éléments simples est une décomposition particulière, qui permet notamment de
se ramener à une forme qui permet de calculer les primitives. Elle est également utile pour la transformation
de Laplace (voir Semestre 2).

2.2 Décomposition en éléments simples

Soit une fraction rationnelle irréductible F (X) =
N(X)

D(X)
.

La DES se fait en quatre étapes :

1 Déterminer la partie entière

2 Factoriser le dénominateur

3 Poser la forme générale de la DES

4 Déterminer les coefficients

La DES n’est pas même dans R et dans C car la factorisation est différente.

2.2.1 Première étape : Déterminer la partie entière.

On note E la partie entière de F , si bien que F (X) peut s’écrire :

F (X) = E(X) +
R(X)

D(X)

où
R(X)

D(X)
est une fraction rationnelle irréductible, R(X) étant le reste de la division par puissances décrois-

santes de N(X) par D(X).

C’est finalement la fraction rationnelle
R(X)

D(X)
qu’il faut décomposer en éléments simples.

Exemple 4.7
Soit F1(X) =

X5 + 2X3 − 2X2 + 2X

X4 − 1
.

La division de X5+2X3−2X2+2X par X4−1 donne un quotient égal à X et un reste égal à 2X3−2X2+3X
donc :

F1(X) = X +
2X3 − 2X2 + 3X

X4 − 1

2.2.2 Deuxième étape : Factoriser le dénominateur.

On note Xi les pôles de la fraction irréductible
R(X)

D(X)
, chacun de multiplicité αi.

• Sur R :
Le dénominateur peut se mettre sous la forme :

D(X) = λ
∏
i

(X −Xi)
αi
∏
j

(X2 + pjX + qj)
βj

Les polynômes X2 + pjX + qj sont des polynômes irréductibles dans R.

On a alors :

F (X) = E(X) +
R(X)

λ
∏
i(X −Xi)αi

∏
j(X

2 + pjX + qj)βj

Exemple 4.8
Pour la fraction F1 précédente : X4 − 1 = (X2 + 1)(X2 − 1) = (X2 + 1)(X + 1)(X − 1). Donc :

F1(X) = X +
3X3 − 2X2 + 3X

(X2 + 1)(X + 1)(X − 1)
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• Sur C :
Dans C les polynômes du type X2 + pjX + qj précédents, qui sont irréductibles dans R, ont deux
racines dans C.

On note toujours Xi les racines réelles et αi leur multiplicité, et on note Zj les racines complexes de
multiplicité βj .

Le dénominateur peut se mettre sous la forme :

D(X) = λ
∏
i

(X −Xi)
αi
∏
j

(X − Zj)βi

On a alors :

F (X) = E(X) +
R(X)

λ
∏
i(X −Xi)αi

∏
j(X − Zj)βi

Exemple 4.9
Pour la fraction F1 précédente : X4 − 1 = (X + i)(X − i)(X + 1)(X − 1). Donc :

F1(X) = X +
3X3 − 2X2 + 3X

(X + i)(X − i)(X + 1)(X − 1)

2.2.3 Troisième étape : Poser la forme générale de la décomposition en éléments simples

Les pôles et leurs multiplicité ayant été déterminés, on pose la forme générale de la DES.

• Sur R :

F (X) = E(X) +
∑
i

αi∑
k=1

Aik
(X −Xi)k

+
∑
j

βj∑
p=1

ajpX + bjp
(X2 + pjX + qj)p

= E(X) +
A11

X −X1
+

A12

(X −X1)2
+ ...+

A1α1

(X −X1)α1

+
A21

X −X2
+

A22

(X −X2)2
+ ...+

A2α2

(X −X2)α2

+...

+
a11X + b11

X2 + p1X + q1
+

a12X + b12

(X2 + p1X + q1)2
+ ...+

a1β1X + b1β1

(X2 + p1X + q1)β1

+
a21X + b21

X2 + p2X + q2
+

a22X + b22

(X2 + p2X + q2)2
+ ...+

a2β2
X + b2β2

(X2 + p1X + q1)β2

+...

où les Aik, bj et aj sont des constantes réelles.
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• Sur C :

F (X) = E(X) +
∑
i

αi∑
k=1

Aik
(X −Xi)k

+
∑
j

βj∑
p=1

Bjp
(X − Zj)p

= E(X) +
A11

X −X1
+

A12

(X −X1)2
+ ...+

A1α1

(X −X1)α1

+
A21

X −X2
+

A22

(X −X2)2
+ ...+

A2α2

(X −X2)α2

+...

+
B11

X − Z1
+

B12

(X − Z1)2
+ ...+

B1β1

(X − Z1)β1

+
B21

X − Z2
+

B22

(X − Z2)2
+ ...+

B2β2

(X − Z2)β2

+...

où les Aik sont des constantes réelles et les Bjp sont des constantes complexes.

Remarque 4.2
Dans le cas de deux pôles complexes conjugués, les constantes Bj correspondantes sont également
complexes conjuguées.

Autrement dit :

• A chaque terme du type (X −X0) de la factorisation on associe un terme de la forme
A

X −X0
où A

est une constante qu’il faudra déterminer par la suite.

• A chaque terme du type (X −X0)n de la factorisation on associe n termes :
A1

X −X0
+

A2

(X −X0)2
+

A3

(X −X0)3
+ .. +

An−1

(X −X0)n−1
+

An
(X −X0)n

où les Ai sont des constantes qu’il faudra déterminer

par la suite.

• A chaque terme du type (X2 + pX + q)n de la factorisation on associe n termes :
a1X + b1

X2 + pX + q
+

a2X + b2
(X2 + pX + q)2

+
a3X + b3

(X2 + pX + q)3
+ ..+

an−1X + bn−1

(X2 + pX + q)n−1
+

anX + bn
(X2 + pX + q)n

où les ai et bi sont

des constantes qu’il faudra déterminer par la suite.
En général, dans ce dernier cas, dans tous les exemples que l’on traitera on aura n = 1

Les fractions rationnelles de la forme
Aik

(X −Xi)k
sont des éléments simples de 1ere espèce d’ordre k.

Les fractions rationnelles de la forme
ajbX + bjb

(X2 + pjX + qj)βj
sont des éléments simples de seconde espèce.

Exemple 4.10
1. Pour la fraction F1 précédente :

• Sur R : F1(X) = X +
A

X + 1
+

B

X − 1
+
aX + b

X2 + 1
avec A ; B ; a ; b = cstes

• Sur C : F1(X) = X +
A

X + 1
+

B

X − 1
+

C

X + i
+

C∗

X − i
avec A ; B ∈ R et C ∈ C

2. F2(X) =
3X + 1

(X + 6)(X − 2)3(X + 2)(X − 4)
:

La partie entière est nulle et le dénominateur est déjà factorisé :

F2(X) =
A

X + 6
+

B1

X − 2
+

B2

(X − 2)2
+

B3

(X − 2)3
+

C

X + 2
+

D

X − 4
avec A ; B1 ; B2 ; B3 ; C ; D = cstes
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3. F3(X) =
1

(X + 1)(X2 + 3)(X − 1)
:

La partie entière est nulle et le dénominateur est déjà factorisé :

F3(X) =
A

X + 1
+

B

X − 1
+
aX + b

X2 + 3
avec A ; B ; a ; b = cstes

4. F4(X) =
5X3 + 8X2 − 4X − 1

X(X − 1)(X + 1)2
:

La partie entière est nulle et le dénominateur est déjà factorisé :

F4(X) =
A

X
+

B

X − 1
+

C1

X + 1
+

C2

(X + 1)2
avec A ; B ; C1 ; C2 = cstes

5. F5(X) =
1

X2 + 4
=

A

X + 2i
+

A∗

X − 2i
où A est une constante complexe.

6. F6(X) =
1

(X − 2)(X2 + 2X + 2)
=

A

X − 2
+

B

X + 1− i
+

B∗

X + 1 + i
avec A ∈ R et B ∈ C.

2.2.4 Quatrième étape : Détermination des constantes

Première méthode : Constantes de éléments de première espèce d’ordre 1 et des termes de
plus haut degré des pôles multiples

Cette méthode peut être utilisée :

• Pour les pôles simples a : les éléments simples correspondant sont de la forme
A

X − a
.

• Pour les termes de plus haut degré des pôles multiples b de multiplicité β : les éléments simples

correspondant sont de la forme
Bβ

(X − b)β
.

Exemple 4.11
Considérons F4(X) =

5X3 + 8X2 − 4X − 1

X(X − 1)(X + 1)2
=
A

X
+

B

X − 1
+

C1

X + 1
+

C2

(X + 1)2
(voir exemple précédent).

Cette méthode permet de déterminer A, B et C2, mais pas C1.

La méthode est la suivante :

• Écrire l’égalité entre la fraction rationnelle et sa décomposition.

• Pour chacun des termes du type
A

X − a
, multiplier à gauche et à droite par (X−a) et poser X = a, de

telle sorte que dans la décomposition tous les termes sont nuls sauf celui correspondant au coefficient
cherché A.

De même pour chacun des termes du type
Bα

(X − b)α
, il faut multiplier à gauche et à droite par

(X − b)α et poser X = b, de sorte que dans la décomposition tous les termes sont nuls sauf celui
correspondant au coefficient cherché Bα.

Exemple 4.12
1. F4(X) =

5X3 + 8X2 − 4X − 1

X(X − 1)(X + 1)2
=
A

X
+

B

X − 1
+

C1

X + 1
+

C2

(X + 1)2

• Détermination de A :

XF4(X) =
5X3 + 8X2 − 4X − 1

(X − 1)(X + 1)2
= A+X

(
B

X − 1
+

C1

X + 1
+

C2

(X + 1)2

)
=⇒ XF4(X)|X=0 =

−1

−1× 1
= A

=⇒ A = 1

• Détermination de B :

(X − 1)F4(X) =
5X3 + 8X2 − 4X − 1

X(X + 1)2
= B + (X − 1)

(
A

X
+

C1

X + 1
+

C2

(X + 1)2

)
=⇒ (X − 1)F4(X)|X=1 =

8

4
= B

=⇒ B = 2
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• Détermination de C2 :

(X + 1)2F4(X) =
5X3 + 8X2 − 4X − 1

X(X − 1)
= C2 + (X + 1)2

(
A

X
+

B

(X − 1)
+

C1

X + 1

)
=⇒ (X + 12)F4(X)

∣∣
X=−1

=
6

2
= C2

=⇒ C2 = 3

• A ce stade on ne sait pas encore comment déterminer C1.

Donc F4(X) =
1

X
+

2

X − 1
+

C1

X + 1
+

3

(X + 1)2
.

2. F5(X) =
1

X2 + 4
:

• La partie entière est nulle.

• La factorisation du dénominateur donne X2 + 4 = (X + 2i)(X − 2i) :

F5(X) =
1

(X + 2i)(X − 2i)

• On note que les deux pôles complexes sont conjugués l’un de l’autre.

Donc F5(X) =
A

X + 2i
+

A∗

X − 2i
où A est une constante complexe.

• On détermine A par exemple par la première méthode présentée dans la partie précédente :

A = F5(X)|X=−2i =
1

(X − 2i)

∣∣∣∣
X=−2i

=⇒ A =
1

−4i
=
i

4
=⇒ A∗ = − i

4

Donc la DES de F5(X) est :

F5(X) =
i

4(X + 2i)
− i

4(X − 2i)

3. F6(X) =
1

(X − 2)(X2 + 2X + 2)
:

• La partie entière est nulle.

• La factorisation du dénominateur donne (X−2)(X2 +2X+2)) = (X−2)(X+1−i)(X+1+i).
Donc :

F6(X) =
1

(X − 2)(X + 1− i)(X + 1 + i)

• On note que les deux pôles complexes sont conjugués l’un de l’autre.

Donc F6(X) =
A

X − 2
+

B

X + 1− i
+

B∗

X + 1 + i
avec A ∈ R et B ∈ C.

• On détermine les constantes :

A = (X − 2)F6(X)|X=2 =
1

10

B = (X + 1− i)F6(X)|X=−1+i =
3i− 1

20

B∗ = −3i+ 1

20

Donc F6(X) =
1

10(X − 2)
+

3i− 1

20(X + 1− i)
− 3i+ 1

20(X + 1 + i)

4. Déterminer la DES de F1 sur R et sur C.
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Deuxième méthode : Donner des valeurs particulières à X

S’il ne nous reste qu’un ou deux coefficients à déterminer, on peut choisir de donner des valeurs particulières
à X.
Cette méthode permet notamment de déterminer les constantes des pôles de second espèce.

La méthode est la suivante :

• On écrit l’égalité entre la fraction rationnelle et sa décomposition en éléments simples.

• S’il ne reste qu’un coefficient, on donne une valeur particulière à Xet grâce à l’égalité entre la fraction
rationnelle et sa DES, on peut déterminer ce coefficient.

• S’il reste deux coefficients, on donne deux valeurs particulières à X et grâce à l’égalité entre la
fraction rationnelle et sa DES, on obtient un système de deux équations dont les deux inconnues sont
les coefficients à déterminer.

Attention, on ne peut pas donner comme valeur particulière un pôle de la fraction rationnelle !

Exemple 4.13
Pour le coefficient C1 de la fraction F4 précédente, on peut par exemple poser X = 2 (0, 1 et −1 sont des
valeurs interdites) :

F4(2) =
5× 23 + 8× 22 − 4× 2− 1

2(2− 1)(2 + 1)2
=

1

2
+

2

2− 1
+

C1

2 + 1
+

3

(2 + 1)2

=⇒ 7

2
=

17

6
+
C1

3

=⇒ C1

3
=

2

3

=⇒ C1 = 2

Donc F4(X) =
1

X
+

2

X − 1
+

2

X + 1
+

3

(X + 1)2

Troisième méthode : Méthode générale pour les pôles multiples

Pour des pôles de multiplicité α, la première méthode ne permet à priori de déterminer que le coefficient
Aα, mais pas ceux des termes d’ordres inférieurs. La méthode suivante permet de déterminer d’un seul coup
tous les coefficients des pôles multiples.

Soit une fraction rationnelle irréductible F (X) =
N(X)

D(X)
possédant un pôle a de multiplicité α.

Alors on peut l’écrire :

F (X) =
N(X)

(X − a)αd(X)
avec d(a) 6= 0

La décomposition en éléments simples permet par ailleurs d’écrire :

F (X) = R(X) +

α∑
i=1

Ai
(X − a)i

où R(X) est une fraction rationnelle égale à la somme de tous les autres termes de la DES.
En égalisant ces deux relations on a :

N(X)

(X − a)αd(X)
= R(X) +

α∑
i=1

Ai
(X − a)i

⇔ N(X)

d(X)
= R(X)(X − a)α +

α∑
i=1

Ai(X − a)α−i

On fait le changement de variable h = X − a (⇔ X = a+ h) :

N(a+ h)

d(a+ h)
= E(a+ h)(h)α +

α∑
i=1

Aih
α−i
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On reconnait la forme générale de la division par puissances croissantes à l’ordre α−1 du polynôme N(a+h)
par le polynôme d(a+ h).

Le coefficient du terme de degré i de la décomposition en élément simple (Ai) est celui se trouvant devant
hα−i.

Effectuer la division par puissances croissantes de N(a+ h) par d(a+ h) permet donc d’identifier ces coef-
ficients.

Exemple 4.14
On cherche la décomposition en éléments simples sur R de G(X) =

X2 − 2X + 1

X(X − 2)3
.

La forme générale de la DES est :

G(X) =
A1

X − 2
+

A2

(X − 2)2
+

A3

(X − 2)3
+
B

X

Par la première méthode on détermine B = −1

8
.

Pour les coefficients Ai :

• On multiplie les deux expressions de G par (X − 2)3 :

G(X)(X − 2)3 =
X2 − 2X + 1

X
= A1(X − 2)2 +A2(X − 2) +A3 +

B(X − 2)3

X

• On fait le changement de variable h = X − 2⇔ X = h+ 2 :

(h+ 2)2 − 2(h+ 2) + 1

h+ 2
= A1h

2 +A2h+A3 +
Bh2

h+ 2
=⇒ h2 + 2h+ 1

h+ 2
= A1h+B2h

2 +A3 +
Bh3

h+ 2

• On doit donc faire la division par puissances croissantes à l’ordre 2 de h2 + 2h+ 1 par h+ 2.

On obtient 1 + 2h+ h2 = (2 + h)

(
1

2
+

3h

4
+
h2

8

)
− h3

8
.

• On identifie les coefficients :

A1 =
1

8
; A2 =

3

4
; A3 =

1

2

On a donc finalement :

G(X) = − 1

8X
+

1

8(X − 2)
+

3

4(X − 2)2
+

1

2(X − 2)3

2.3 Lien entre les décompositions en éléments simples sur C et sur R
On peut se servir de la DES sur C pour écrire la DES sur R.

Les termes de première espèce correspondant à des pôles réels sont les mêmes.

Pour les termes correspondant à des pôles complexes, ils s’écrivent dans R :

aX + b

X2 + pX + q
a ; b ∈ R

Et dans C :
A

X − Z1
+

B

X − Z2
A ; B ∈ C

Avec X2 + pX + q = (X − Z1)(X − Z2).
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Ces deux termes sont égaux, donc on a :

aX + b

X2 + pX + q
=

A

X − Z1
+

B

X − Z2

En réduisant le terme de droite au même dénominateur on obtient :

aX + b

X2 + pX + q
=
A(X − Z2) +B(X − Z1)

(X − Z1)(X − Z2)
=

(A+B)X − (AZ1 +BZ2)

X2 + pX + q

En identifiant les numérateurs on a :  a = A+B

b = −(AZ1 +BZ2)

Ainsi on peut déterminer les coefficient des termes de seconde espèce (a et b) à partir des coefficients
complexes de la DES sur C.

Exemple 4.15
Soit F (X) =

X

(X2 + 4)(X + 1)
.

Dans R, la DES s’écrit :

F (X) =
A

X + 1
+
aX + b

X2 + 4
A ; a ; b ∈ R

Dans C la DES s’écrit :

F (X) =
A

X + 1
+

B

X + 2i
+

B∗

X − 2i
A ∈ R B ∈ C

Dans les deux cas le coefficient A correspondant au pôle réel est bien le même.

Déterminons les coefficients de la DES sur C :

A = (X + 1)F (X)|X=−1 = −1

5

B = (X + 2i)F (X)|X=−2i =
1 + 2i

10

B∗ =
1− 2i

10

Donc F (X) = − 1

5(X + 1
+

1 + 2i

10(X + 2i)
+

1− 2i

10(X − 2i)
.

En réduisant
1 + 2i

10(X + 2i)
+

1− 2i

10(X − 2i)
au même dénominateur on a :

1 + 2i

10(X + 2i)
+

1− 2i

10(X − 2i)
=

X + 4

5(X2 + 4)

On identifie donc
X + 4

5
= aX + b =⇒ a =

1

5
et b =

4

5
.

La DES sur R est donc :

F (X) =
X + 4

5(X2 + 4)
− 1

5(X + 1)
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3 Primitives des fractions rationnelles réelles

Avant de chercher à intégrer une fraction rationnelle, il faut toujours commencer par écrire sa décomposition
en éléments simples, et c’est sous cette forme qu’il faut intégrer.

3.1 Primitives des éléments de première espèce

Ce sont les éléments de la forme
A

(X − a)n
avec a ∈ R et n ∈ N.

Cette intégration ne pose pas de problème :

• Pour n = 1 :

∫ X A

(t− a)
dt = A ln |X − a|+ cste

• Pour n > 1 :

∫ X A

(t− a)n
dt = − 1

n− 1

A

(X − a)n−1
+ cste

Exemple 4.16
On cherche la primitive de la fonction f : x 7→ 3x2 + 2

(x− 1)3

• la DES donne f(x) =
3

x− 1
+

6

(x− 1)2
+

5

(x− 1)3

• On a alors :∫ X

f(t)dt = 3 ln |X − 1| − 6

X − 1
− 5

2(X − 1)2
+ cste = 3 ln |X − 1| − 12X − 7

2(X − 1)2
+ cste

3.2 Intégration des éléments de seconde espèce de multiplicité 1

Ce sont les éléments de la forme
aX + b

X2 + pX + q
où X2 + pX + q est un polynôme irréductible dans R.

Pour le calcul de la primitive, on décompose cette fraction rationnelle de la façon suivante :

I =

∫ X at+ b

t2 + pt+ q
dt =

∫ X a

2

2t+ p

t2 + pt+ q
dt+

∫ X b− ap/2
t2 + pt+ q

dt =
a

2
I1 +

(
b− ap

2

)
I2

Avec I1 =

∫ X 2t+ p

t2 + pt+ q
dt et I2 =

∫ X 1

t2 + pt+ q
dt.

Il faut donc calculer ces deux primitives :

• I1 =

∫ X 2t+ p

t2 + pt+ q
dt = ln |X2 + pX + q|+ cste

• Le calcul de I2 est un peu plus complexe et nécessite un changement de variable .

On a t2 + pt+ q =
(
t+

p

2

)2

+ q − p2

4
.

Or le discriminant du dénominateur est nécessairement négatif puisque par hypothèse le dénominateur
n’est pas factorisable dans R :

p2 − 4q < 0 =⇒ q −
(p

2

)2

> 0

On pose alors δ2 = q −
(p

2

)2

> 0, et on a :

t2 + pt+ q =
(
t+

p

2

)2

+ δ2 = δ2

[
1

δ2

(
t+

p

2

)2

+ 1

]
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On fait le changement de variable :

u =
1

δ

(
t+

p

2

)
⇔

t = δu− p

2

dt = δdu

t2 + pt+ q = δ2(u2 + 1)

De sorte que :

I2 =

∫ 1
δ (X+ p

2 ) 1

δ2(u2 + 1)
δdu =

1

δ

∫ 1
δ (X+ p

2 ) 1

(u2 + 1)
du =

1

δ
arctan

(
1

δ

(
X +

p

2

))
+ cste

Pour résumer :

∫
at+ b

(t2 + pt+ q)n
dt =

a

2
ln |X2 + pX + q|+

b− ap

2√
q −

(p
2

)2
arctan

 X +
p

2√
q −

(p
2

)2

+ cste
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4 Exercices du chapitre 4

Exercice 4.1
Écrire les fractions rationnelles suivantes comme la somme de leur partie entière et d’une fraction rationnelle
irréductible.

1. F1(x) =
x3 + 5x+ 5

x+ 1

2. F2(x) =
x6 + 2x5 + 2x4 + 5x3 + 10x2 + 5x+ 1

(x+ 1)2

Exercice 4.2
Mettre chacune des fractions rationnelles suivantes sous forme irréductible dans R[X] :

1.
X3 −X2 +X − 1

X3 − 1
.

2.
X3 − 3X + 2

X4 − 5X2 + 4
.

Exercice 4.3
Soient les fractions rationnelles suivantes :

• F1(x) =
1− x

(x+ 1)(x2 − 4)

• F2(x) =
x3 − 4x2 + 4x+ 1

x2 − 4x+ 4

• F3(x) =
x2 − 1

x2 + 1

• F4(x) =
x3 + 5x+ 5

x+ 1
Donner sans chercher à déterminer les coefficients la forme générale de leur décomposition en éléments
simples dans R et dans C.

Exercice 4.4
Soit la fraction rationnelle F (x) =

x2 + 1

x3 − 6x2 + 11x− 6

1. Déterminer la(les) racine(s) de F sur R.

2. Montrer que 1, 2 et 3 sont des pôles de F .

3. Déterminer la décomposition en éléments simples de F sur R.

Exercice 4.5
Décomposer en éléments simples sur R :

1. F1(X) =
2X2 − 5X − 11

X2 − 2X − 3

2. F2(X) =
X3 −X2 +X

(1−X2)(2X − 1)

3. F3(X) =
X + 5

X2 + 4X + 4

4. F4(X) =
X3 − 17X + 12

X3 − 3X2 − 9X + 27

5. F5(X) =
2X

(X2 + 3)(X − 1)

6. F6(X) =
2X3 − 3X2 + 6X − 30

X3 − 3X2 + 6X − 18

7. F7(X) =
X2 + 5

(X − 1)4

8. F8(X) =
27

(X + 1)3(X − 2)

9. F9(X) =
(X2 + 1)2

(X − 1)6

10. F10(X) =
X2 − 4

(X − 1)2(X + 1)3

11. F11(X) =
X + 1

(X − 1)4(X − 2)2

Exercice 4.6
Décomposer en éléments simples sur C puis sur R :

44 BASTIEN MARGUET, MATHÉMATIQUES



1. G1(X) =
4X2 + 2

X(X2 + 1)
2. G2(X) =

4X2 − 10X + 20

(X2 + 4)(X − 3)
3. G3(X) = − X2 + 4X + 6

X3 + 2X + 2X2

Exercice 4.7
Calculer les primitives des fractions rationnelles F1 à F7 de l’exercice 5.

Exercice corrigé 4.1
Décomposer en éléments simples sur R :

1. F (X) =
X

X2 − 4

2. G(X) =
X3 − 3X2 +X − 4

X − 1

3. H(X) =
2X3 +X2 −X + 1

X2 − 2X + 1

4. K(x) =
2x2 − 3x+ 3

x3 − 2x2 + x− 1

5. L(x) =
4x4 − 10x3 + 8x2 − 4x+ 1

x3(x− 1)2

1. • La partie entière est nulle

• Factorisation du dénominateur : F (X) =
X

X2 − 4
=

X

(X − 2)(X + 2)

• Forme générale de la DES : F (X) =
A

X − 2
+

B

X + 2
A ; B = cstes ∈ R

• A = F (X)(X − 2)|X=2 =
X

X + 2

∣∣∣∣
X=2

=
2

2 + 2
=

1

2

• B = F (X)(X + 2)|X=−2 =
X

X − 2

∣∣∣∣
X=−2

=
−2

−2− 2
=

1

2

Donc F (X) =
1

2(X − 2)
+

1

2(X + 2)

2. La partie entière est non nulle. La division par puissances décroissantes du numérateur par le dénominateur donne :

G(X) = X
2 − 2X − 1−

5

X − 1

C’est la directement la DES.

3. • La partie entière est non nulle. La division par puissances décroissantes du numérateur par le dénominateur donne

H(X) = 2X + 5 +
7X − 4

X2 − 2X + 1
.

• Factorisation du dénominateur : H(X) = 2X + 5 +
7X − 4

(X − 1)2

• Forme générale de la DES : H(X) = 2X + 5 +
A1

X − 1
+

A2

(X − 1)2
A1 ; A2 = cstes ∈ R

• A2 = H(X)(X − 1)2
∣∣
X=1

= (2X3 +X2 −X + 1)
∣∣
X=1

= 3

• Pour A1 on peut prendre une valeur particulière, par exemple X = 0 :

H(0) =
2X3 +X2 −X + 1

X2 − 2X + 1

∣∣∣∣∣
X=0

=

(
2X + 5 +

A1

X − 1
+

3

(X − 1)2

)∣∣∣∣
X=0

=⇒ 1 = 5− A1 + 3 =⇒ A1 = 7

Donc H(X) = 2X + 5 +
7

X − 1
+

3

(X − 1)2

4. • La partie entière est nulle.

• Factorisation du dénominateur : K(x) =
2x2 − 3x+ 3

(x− 2)(x2 + 1)

• Forme générale de la DES : K(x) =
A

x− 2
+
ax+ b

x2 + 1
A ; a ; b = cstes ∈ R

• A = K(x)(x− 2)2
∣∣
x=2

=
2x2 − 3x+ 3

x2 + 1

∣∣∣∣∣
X=2

= 1

• Pour a et b on peut prendre deux valeurs particulières, par exemple x = 0 et x = −1 :
K(0) =

3

−2
=

1

−2
+
b

1

K(−1) =
8

−6
=

1

−3
+
−a+ b

2

=⇒

 b = −1

a = b+ 2 = 1

Donc K(x) =
1

x− 2
+

x− 1

x2 + 1
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5. • La partie entière est nulle.

• Forme générale de la DES :

L(x) =
A1

x
+
A2

x2
+
A3

x3
+

B1

x− 1
+

B2

(x− 1)2
A1 ; A2 ; A3 ; B1 ; B2 = cstes ∈ R

• Pour les Ai :

L(x)x
3

= A1x
2

+ A2x+ A3 +

(
B1

x− 1
+

B2

(x− 1)2

)
x
3

=
4x4 − 10x3 + 8x2 − 4x+ 1

(x− 1)2
=

4x4 − 10x3 + 8x2 − 4x+ 1

x2 − 2x− 1

La division de (4x4 − 10x3 + 8x2 − 4x + 1) par (x2 − 2x − 1) par puissances croissantes à l’ordre 3 donne comme
quotient (1− 2x+ 3x2). On identifie donc : 

A1 = 3

A2 = −2

A3 = 1

• B2 = L(x)(x− 1)2
∣∣
x=1

= −1

• Pour B1 on prend une valeur particulière, par exemple x = −1 :

L(−1) = −
27

4
= −3− 2− 1 +

B1

−2
−

1

4
=⇒ B1 = 1

Donc L(x) =
1

x
−

2

x2
+

3

x3
+

1

x− 1
−

1

(x− 1)2

Exercice corrigé 4.2
Soit la fonction f : x 7→ f(x) =

2x4 + 2x3 + 2x2 − 3x− 1

x3(x2 − 1)
.

1. Justifier sans calcul que la partie entière de f(x) est nulle.

2. Déterminer la factorisation du dénominateur et en déduire le domaine de définition de f .

3. Déterminer la décomposition en éléments simples de f(x).

4. Question BONUS :

Calculer I =

∫ 3

2

f(x) dx.

1. Le numérateur est de degré 4 et le dénominateur est de degré 5. Le degré du dénominateur étant supérieur à celui du numérateur,
la partie entière de f(x) est nulle.

2. x2 − 1 = (x− 1)(x+ 1) =⇒ x
3
(x

2 − 1) = x
3
(x− 1)(x+ 1) .

On en déduit Df = R \ {0 ; 1 ; −1} .

3. On a f(x) =
2x4 + 2x3 + 2x2 − 3x− 1

x3(x− 1)(x+ 1)
.

• Forme générale de la décomposition en éléments simples :

f(x) =
A

x− 1
+

B

x+ 1
+
C1

x
+
C2

x2
+
C3

x3
A ; B ; C1 ; C2 ; C3 = cstes

• Détermination de A :

f(x)(x− 1)|x=1 = A =
2 + 2 + 2− 3− 1

1× 2
=⇒ A = 1

• Détermination de B :

f(x)(x+ 1)|x=−1 = B =
2− 2 + 2 + 3− 1

−1× (−2)
=⇒ B = 2

• Détermination des Ci :

f(x)× x3
=

2x4 + 2x3 + 2x2 − 3x− 1

(x2 − 1)
=

(
A

x− 1
+

B

x+ 1

)
x
3

+ C1x
2

+ C2x+ C3

On doit doit donc faire la division par puissances croissantes à l’ordre 2 de 2x4 + 2x3 + 2x2 − 3x− 1 par x2 − 1. Cette
division donne un quotient de 1 + 3x− x2.
On en déduit C1 = −1 ; C2 = 3 ; C3 = 1.

Finalement :

f(x) =
1

x− 1
+

2

x+ 1
−

1

x
+

3

x2
+

1

x3
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