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Chapitre 1

Fonctions de plusieurs variables

1 Un exemple en thermodynamique : volume d’un échantillon de
gaz parfait
On sait que pour un échantillon de gaz parfait de n moles, la pression P, le volume V, la température T et

la quantité de matiere n sont reliés par la relation :

PV =nRT ou R est la constante des gaz parfaits.

On a donc : RT
n
V:*
P

La volume est donc une fonction de trois variables : n, P et T.
Le volume, la pression, la température et la quantité de matiere étant des nombres réels positifs, cette
fonction est définie sur R? et prend ses valeurs dans Ry. On note :

V : Ri — ]R+

(n,T,P) V(n,T,P):ﬂ
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2 Fonction de plusieurs variables

2.1 Définition

Pour alléger les notations on notera parfois @ = (21, xa, ...z, ) le n-upplet des variables, et f(z) = f(x1, 22, ..., Tn)-

Exemple 1.1
1 f]_l(l',y,Z) = fl(m,y,z)=|x+y—z|
22

21

2. fa: (z,y) = falz,y) =

Y
ry
3. f3: (l‘,y,Z) = fg(m,y,z):m—i-y—?

4 far (xy) = falzy) = Vo —y

2.2 Représentation graphique d’une fonction de deux variables
Soit une fonction f de deux variables z et y :
fo(@sy)=z=[f(z;y)

On peut représenter une telle fonction dans I'espace a trois dimensions : c’est la surface constituée des points
de coordonnées (z ;y ;z).
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Exemple 1.2
Dans le repére en trois dimensions :
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3 Dérivées

3.1 Dérivée partielle d’ordre 1 par rapport a I’'une des variables

Soit une fonction f de m variables z;.

On appelle dérivée partielle de f par rapport a la variable z; et on note 3 la fonction obtenue en
T

dérivant f par rapport a x;, toutes les autres variables étant considérées comme des constantes.

On a alors : of . ; - |
. T1y.eey Ty =F g oeeq L — LYy ueey Ly eeny
awi(ml’...7xi’...7xn) = llm 1 T nh 1 3 "

f—0

Pour bien signifier que les autres variables sont constantes, on les met parfois en indice :

>
(91‘1‘ oy
Tt

Remarque :
df

Dans le cas d’une fonction d’une seule variable, on ne note pas e mais Q-
x T

Exemple 1.3
Déterminer les domaines de définition et calculer toutes les dérivées partielles des fonctions suivantes :

o fi(wy,2) flo,y,2) =2 +y+=z
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l.z

D (Y —> T, 1 = —
° g:(z,y) = g(z,y) 71
nRT

P

e (n,T,P)—V =

3.2 Dérivées partielles d’ordres supérieur

On se limite dans la définition & une fonction de deux variables, les définitions se généralisant a des fonctions
de plus de deux variables.

Soit une fonction f: x — f(z,y).

On peut a priori définir quatre dérivées partielles secondes :

0*f _ 0 (of ’f 9 (0
22 () -5 )
;o (of °f _ o (of
* 0xdy  Ox (8y> * 8y6m_8y< x)
o0 f 0% f

Mais on montre que 1’on a toujours

Oyox - 0xdy’
Les dérivées partielles d’ordre n se calculent de la méme maniere a partir des dérivées partielles d’ordre

n — 1.

Exemple 1.4
Déterminer les dérivées partielles d’ordre 2 des fonctions de l’exemple précédent.

3.3 Différentielle

La différentielle d’une fonction f, notée df, représente la variation infinitésimale de f(x1 ; x5 ... 5 ;%)
résultant des variations inifinitésimales dx; de chacune des variables : si chaque variable x; varie de dx;,
alors le nombre f(z1,x2,...) varie de df.

Soit une fonction f de m variables z;.
La différentielle de f est donnée par :

—Of . 0f of of
df = ; Bo; dz; = o dzy + Fon dzy + ... + B dz,,

Exemple 1.5
Déterminer les différentielles des fonctions précédentes.

4 Equations aux dérivées partielles

Une équation aux dérivées partielles (EDP) est une équation faisant intervenir les différentes dérivées par-
tielles d’une fonction de plusieurs variables.

On ne traitera que des exemples.

4.1 Exemple 1

On cherche la fonction f(z,y) obéissant aux systeme d’EDP suivant :

*f

g%gf— 0 (1)
0xdy =3y 2)
f(1,0)=0 (3)
f(0,0) =1 (4)
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4.2 Exemple 2

On cherche la fonction f(z,y) obéissant aux systeme d’EDP suivant :

g; =2ry+y* (1)
7 =22 + 27y (2)
£(0,0) =3 3)

4.3 Exemple 3

On cherche la fonction f(z,y) obéissant au systeme d’EDP suivant :

P e =0
% = cos(x) (2)
f(0,0)=3 (3)
G-

5 Intégrales multiples

5.1 Exemple introductif

Calculer I'intégrale suivante :

1 T 2
/ / / x2%sin(y) dz dy dz
=0 Jy=0Jz=-1
5.2 Meéthode générale

Soit & calculer I'intégrale d’une fonction de plusieurs variables indépendantes :

bl b2 bn
I:/ / / flzy; a2 oo xp)de, dey—q ... dze day
r1=ai J ra2=asz Tn=0n

Cette intégrale se calcule en calculant successivement les intégrales par rapport a chacune des variable, en
gardant les autres constantes :
e On commence par intégrer selon z,,, et on a alors une fonction qui ne dépend plus de z,, :

bn
g(x1; Tay o Tp_1) :/ flzy s zo5 o5 xy) day,
QAn,

Iintégrale I se réécrit alors :

b1 b2 bn—1
I:/ / / g(z1; z2; o5 Tp—1)dep_1...dzeda
a1 Jaz an—1

e On integre ensuite selon z,_1, et on a alors une fonction qui ne dépend plus de z,,_1 :

bn_1
h(zy; w25 o5 Tp_2) :/ g(x1 5 22 s o) dr,_y

An—1

I'intégrale I se réécrit alors :
by pba by
I :/ / / h(.’El y X2y e .’En,Q) d.’En,Q...d(EQ d£L'1
ai az An—2
e ctc
L’ordre d’intégration n’a pas d’importance.
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6 Exercices du chapitre 1

Exercice 1.1
Soient les fonctions suivantes :

o filz,y) =3z +2y

/,y+m2

o folz,y) = N
o fo(z,y,2) = %yz o frlz,y) = \/ljiy
o fa(z,y) =In(x+2) . fg(x,y,z):m(x;;l)
o falz,y) = 5 . fg(a:,y,z)Z(x—l)Q—FEZ_;;j
o f5(z,y,2) = \f +z o fio(z,y,2,t) = ;ti +Vt

1. Déterminer leur ensemble de définition, et pour les fonctions de deux variables les représenter dans
le plan.

2. Déterminer toutes les dérivées partielles de ces fonctions.

Exercice 1.2
En thermodynamique, les coefficients thermoélastiques d’un gaz sont définis par :
1 0V

e Coeflicient de compressibilité isotherme : = —— —
b xr =7 8P>T,,

1 0V
e Coefficient de dilatation a pression constante : « = — —
Vor)p,
P oT
Donner les expressions des coefficients pour un gaz parfait en fonction de V', P, T, n et de la constante des
gaz parfait R.

1 OP
e Coefficient de variation de pression isochore : § = — )
Vin

Exercice 1.3 r
1. Soit la fonction fi(z,y) = = olt = et y sont fonction de t : x(t) = t2 et y(t) = cos(2t).
Y

d
Déterminer % en fonction de t.

2. Soit la fonction fo(z1,x2) = x1 — x avec x1 = cos(2y + 2) et x9 = %

Ofs | Ofa

Déterminer N et —— en fonction de z et y.
z

Ay
En déduire dfs

3. Soit f3(z) = 3% avec x(y,2) =Iny — In 2.
Déterminer — et —> en fonction de 2 et Y.

0z dy
En déduire df3

Exercice 1.4
1. Calculer les dérivée partielles d’ordre 1 et 2 de la fonction f(z,y, z) = zyz + 222 + L. x2y3.
z

2. Calculer les dérivée partielles d’ordre 1, 2 et 3 de la fonction g(x,y) = cos(zy) — z%y°.

Exercice 1.5

On s’intéresse a une barre métallique de conductivité thermique A\, de masse volumique p et de capacité
thermique c.

Cette barre est soumis a des variations periodiques de température avec une pulsation w, si bien que sa
temptérature T en fonction du temps t et de la position x sur la barre est donnée par la fonction :

wpc

T(x,t) = Toe” *¥sin (wt — ax) avec a = )
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Montrer que cette fonction obéit a 1’équation de la chaleur a une dimension, c¢’est-a-dire que :

OT _ pedT
or2 X\ Ot

Exercice 1.6
Calculer les intégrales des fonctions suivantes sur le domaine D :

L filz;y)=a2y D={ze0;2];ye[0;1]}
2. fo(z; y)==xcos(ry) D={ze€0;n|;yel0; 1]}

Exercice corrigé 1.1
Un élément infinitésimal de surface s’exprime comme d2S = rdrd6.
Retrouver 'expression de 'aire d’un disque de rayon R, pour lequel 0 <7 < Ret 0 < 6 < 27 :

R 2w
2
5= / / a5
0 0
"R 27 "R "R 7 r2 1 R?
A = / / r drdf = / 7()](“)' rdr = / 2rr dr = 27w | — =21— =
Jr=0Jo=0 Jo Jo 2 2

Exercice corrigé 1.2

On s’intéresse a une barre métallique de conductivité thermique A\, de masse volumique p et de capacité
thermique c.

Cette barre est soumis a des variations periodiques de température avec une pulsation w, si bien que sa
temptérature T en fonction du temps ¢ et de la position x sur la barre est donnée par la fonction :

wpc

T(x,t) = Toe” *¥sin (wt — ax) avec a = 3\

Montrer que cette fonction obéit a 1’équation de la chaleur a une dimension, c’est-a-dire que :

o?T  pcdT
Ox? A Ot
5T
° ((7 = wTpe  ** cos(wt — azx)
aT _
— = —aTpe” “7 (sin(wt — ax) + cos(wt — ax))
.
(,) — = a’Tye™ " (sin(wt — az) + cos(wt — ax) 4 cos(wt — ax) — sin(wt — ax)) = 202 Tye ™ ® cos(wt — ax)
Ox?

On a donc : )
1 9°T 19T

202 922 w Ot

Toe  ** cos(wt — ax) =
o*°T  2a*%0T

Ox? 7 w ot
202 2wpce olel
On calcule = ! re
w 2w A
i ) 9°T  pc T , o .
On a donc bien | — = — — | : cette température vérifie I’équation de la chaleur.
ox? A Ot
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Chapitre 2

Résolution de systemes linéaires

1 Définition d’un systeme d’équations

Un systeme d’équations est un ensemble d’équations faisant intervenir plusieurs inconnues dépendant les
unes des autres.
Résoudre le systéme, c’est déterminer (si elles existent) toutes les valeurs possibles de ces inconnues.

Exemple 2.1

Le systeme suivant est un systeme de trois équations faisant intervenir les trois variables x, y et z :
T+2y+2z2=2
r+3y—2z2=-1
3x+5y+ 8z =38

2 Meéthode par substitution

La méthode par substitution est peut-étre la plus simple parce qu’elle est systématique, mais elle peut-étre
fastidieuse. Elle consiste & remplacer successivement chaque variable (ou inconnue) par son expression en
fonction des autres, jusqu’a pouvoir exprimer une seule des variables indépendamment des autres.

Exemple 2.2
La résolution du systéme de l’exemple 1.1 peut se faire de la maniére suivante :

e Premiére étape : Dans la premiére équation on exprime l'une des variables, x par exemple, en
fonction des deux autres variables. On remplace ensuite dans les deux autres équations
rT=2—-2y—2z r=2(1—y—2)
2-2y—224+3y—22=2+y—4z2=-1 =—4§ y—4z2=-3
32—2y—22)+5y+82=6—y+2z=38 —y+2z=2

e Deuxiéme étape : On remplace maintenant dans la deuziéme équation y en fonction de z

xr=2(1—-y—2) r=2(1—-y—2)
y=-—-3+4z - y=-—-3+4z
3—42+22=3—-22=2 2z =1

CHAPITRE 2. RESOLUTION DE SYSTEMES LINEAIRES 13



e Troisiéme étape : On peut maintenant donner les valeurs de toutes les variables, en partant de la
troisieme ligne et en remontant

1
xr=214+1--)=3
y=-3+4-=-1

1
z= =
2

3 Meéthode du Pivot de Gauss

La méthode du Pivot de Gauss permet de transformer le systéeme initial en un autre systeme équivalent, ayant
les mémes solutions, mais qui est plus facile a résoudre. On cherche a obtenir un systeme dit triangulaire,
c’est-a-dire dont une ligne ne contient qu'une variable, la deuxieme ligne deux, etc.

Les opérations autorisées pour transformer le systeme sont les suivantes :
e Echange de deux lignes
e Multiplication d’une ligne par un nombre non nul

e Addition d’un multiple d’une ligne au multiple d’une autre ligne

L’idée de la méthode est d’isoler successivement chacune des variables.

Exemple 2.3
La résolution du systéme de l'exemple 1.1 peut se faire de la maniére suivante :

r+2y+2z =0 (Iq)

y—4z =-3 (Lj)— Ly— L)
—y+2: =2 (L4 — Ly —3Ly)

On a €liminé la variable x des lignes Lo et Ls. Il faut maintenant par exemple éliminer la variable y de la
troisieme ligne, et alors on aura triangularisé le systéme.

r+2y+2z =0 (L) r=-2y—2z=3
y—4z = -3 (L%) = y=4z—-3=-1

1

-2z = —-1(LY§ — Ly + LY) 2=

On a déterminé les valeurs des trois variables : le systéme est résolu!

4 Changement de variable

Il peut arriver qu'un systéme ne fasse pas intervenir directement la variable x mais par exemple 22, | z |,
Vv, etc. On doit alors faire un changement de variable.

Exemple 2.4 224y =5
Résoudre le systéme o
22 —y? =3

Remarque 2.1
Dans les problémes concrets, selon le probléme a résoudre, toutes les solutions ne seront pas “acceptables”.
Par exemple si x et y représentent une quantité de matiere, x et y doivent nécessairement étre positifs.

Remarque 2.2
1l faudra toujours faire bien attention auz domaines de définition des variables (notamment si on a des
racines ou des inverses).

14 BASTIEN MARGUET, MATHEMATIQUES



5 Ecriture des solutions
Soit par exemple le systeme suivant :
22 +y=3
2?2 —y=-1
La résolution de ce systéme donne x = +1 et y = 2 (vérifiez-le!).

11 faut écrire toutes les solutions possibles pour le couple (x, y). On peut écrire ces solutions de deux manieres :

e Sous la forme d’un systeme :

e Sous la forme des couples (z,y) :
(l’,y) € {(17 2)7 (_]—7 2)}

Quand il n’y a pas d’ambiguité possible, ’ordre alphabétique prévaut et on peut noter :

S = {(1’ 2); (_1’ 2)}

6 Un systeme a-t-il toujours une solution ?

On dit qu’'un systéme peut étre résolu s’il a un nombre fini de solutions.
C’est le cas des systemes précédents.

Il existe deux autres cas : les systemes avec une infinité de solutions et les systeme sans solution.

6.1 Systemes sans solutions

Il s’agit des systémes dont deux lignes au moins sont incompatibles, ce qui conduit & plusieurs valeurs
contradictoires pour une méme variable, ou a des absurdités.

Exemple 2.5
Montrer que le systeme suivant n’a aucune solution :

r+y+z=1
r+y+2z2=1
r+y=3
11 est facile de déterminer si un systéme linéaire 2 x 2 a une solution en calculant son déterminant.

Soit le systéme suivant, ou les inconnues sont = et y :

axr+ /iy =m
(S)

Q2 + Bay = 72
Le déterminant de ce systeme est det S = a3 02 — as31 et le systéme a une unique solution si et seulement
si det S # 0.
6.2 Systemes linéaires avec une infinité de solutions

Ce sont les systemes qui ont plus d’inconnues que d’équations.
Si un systeme comporte p inconnues et n équations avec n < p, alors on peut souvent exprimer n inconnues
en fonction des p — n autres, qui sont alors appelée paramétres.

Exemple 2.6
Déterminer 'ensemble des solutions du systeme suivant :

r+2y—52=0
20—y =0

CHAPITRE 2. RESOLUTION DE SYSTEMES LINEAIRES 15



7 Exercices du chapitre 2

Exercice 2.1

Résoudre si possible les systemes suivants :

3r—4y=1
T+ 5y =2
20+ 3y =—4
Jx +2y =—1
3r—2y=4
—6r +4y = -9
15
5 — 30y = —
9 2
—r—4y=1
3¢
3r—2y=1
—6z 4+ 3y = -2
2z + 3y = 64
3z +2y =—1

r+y+2z—-4t=4
20 —y+32=9
r—3y+2z=1
3x —2y+4z=11
z+ 10y — 3z =—-1
2 —y+2z=4
—xr+y+z=-1
r+y+z=>5
7
2y —3z2=——
T+ 2y z 2

19
—6x+2y+5z:?

Exercice 2.2
Résoudre les systemes suivants en utilisant un changement de variable :

722 —9y2 =5
=322 +5y? = -1
7|z| =9yl =5
—3|x| + 5]y| = -1
4 7
=3
r—2 * y+1

R
r—2 y+1

Exercice 2.3

4
Trouver une fraction telle que si on ajoute 3 a chacun de ses termes, on obtient une fraction égale a 5 et

16

10.

11.

12.

13.

14.

15.

r+y+22=0
20+ 2y + 2= -3
r+3y—z=-1

r+y+2z2=0
3z —4y =1
z+5y=0

zT+y+z2=0
r—3y+4z2=13

15
5 — 30y = >

20 + 2y + 4z = -3

3
§x—4y:1

r+y+2z—4t=4
r—3y+2z—2t+13=0
20 4+2y—z+t=0
3z4+y+32+2t—-4=0

20 +y+ 32z —4t =16
3r+2y+z+4t=15
r4+y+3z+4=3
4o+ 3y +22 =2

-2/ +2/y+1=3
—V4r+3/y+1=13

2T +2/y+1=3
Vaz + 3y +1=13

—lz|+7Vy+1=3
—5lz|+9Vy+1=2
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que, si on retranche 3 & chacun de ses termes, on obtient une fraction égale a 3

Exercice 2.4
Le périmetre d’un champ rectangulaire est de 260 m. Si 'on augmente la plus petite dimension de 10 m et
que l'on diminue la plus grande de 10 m, I'aire du champ augmente de 200 m?2.

Calculer les dimensions du champ.

Exercice 2.5
On considére un repere cartésien a deux dimensions dans lequel chaque point est repéré par ses coordonnées

(z,y).

On cherche le point d’intersection des deux droites suivantes :
- (Dy) d’équation 3z +y = —1

- (D) d’équation —4z + 2y =8

1. Trouver les coordonnées de ce point en résolvant un systeme d’équation.

2. Vérifier graphiquement votre solution.

Exercice corrigé 2.1 4 9
Jean possede 5800 euros de plus que Jacques. Jean dépense les 9 de son avoir et Jacques les 3 du sien. 11

reste alors a Jean deux fois plus d’argent qu’a Jacques.
Combien chacun possédait-il 7

On note z la somme d’argent de Jean et y celle de Jacques. z et y vérifient le systéeme suivant :

xr = y 4+ 5800
{ y = 5000 euros

5 3
5

x = 10800 euros

6‘1: = 2;1/

3

Exercice corrigé 2.2

Un rayon de bibliotheque de 1,5 m de long est entierement occupé par 38 livres rangés cote a cote. Certains
livres ont 3 cm d’épaisseur, les autres ont 5 cm d’épaisseur.

Quel est le nombre de livres de chaque épaisseur ?

On note x le nombre de livres de 3 cm d’épaisseur et y le nombre de livres de 5 cm d’épaisseur.

T +y =38
On a:
3x + by = 159

CHAPITRE 2. RESOLUTION DE SYSTEMES LINEAIRES 17
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Chapitre 3

Polynomes

1 Introduction

Vous avez déja rencontré au lycée les fonctions polynémiales. Ce sont les fonctions de la forme :

T ag+arr+ ... +a,z"

Exemple 3.1
T x? 223+ 7

On se place dans tout ce chapitre dans ’ensemble des nombres réels R ou des nombres complexes C.
On donnera donc en général les définitions dans C, mais gardez bien en téte que 'on inclut alors ’ensemble
des réels!

2 Définitions

Soit un ensemble K (K =N,R,C,...).
On appelle polyndéme a coefficients dans K toute expression de la forme :

P(X) =ao +a1 X +axX?+ ... = Zaka avec Vkap € K
k>0

pour laquelle les termes sont tous nuls & partir d’un certain rang (c’est-a-dire d’un certain n).

Le plus grand entier n pour lequel a,, # 0 est le degré du polynéme. On note deg(P) = n.
Autrement dit, Vk > n , ax = 0.

e X est appelée indéterminée du polynome.
e Le nombre aj est le coefficient du terme de degré k.
e Le terme a; X* est un monéme de degré k. Un polynome est donc une somme de monomes.

e L’ensemble des polynémes & coefficients dans K est noté K[X].
Par exemple, ’ensemble des polynémes dont les coefficients a; sont des complexes est noté C[X].

Exemple 3.2

P(X) =1+3X2+5X" est un polynéme de degré 4 a coefficients réels. Il appartient donc a l’ensemble R[X].
Son coefficient de degré 2 et €gal a 3. sont coefficient de degré 3 est nul.

Le monéme de degré j est 5X*.
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Polynoéme nul :

Soit le polynéme P(X) = Y apX*. P(X) est le polynéme nul si et seulement si tous ses coefficients sont
k>0

nuls :
P est le polynéme nul <= Vk a =0

Par convention le polynéme nul est de degré —oo.

Egalité de deux polynomes :

Soient deux polynomes A(X) = > apX¥ et B(X) = Y bpX*.
k>0 E>0
Ces deux polynomes sont égaux si et seulement si tous leurs coefficients sont égaux :
A=B <+ Vk ar = b

Deux polynomes égaux sont donc bien évidemment de méme degré :

A=B — degA=degB

Exemple 3.3
Identifier les coefficients a, b, ¢, d, e vérifiant légalité suivante :

22 =33+ 2 —1+4drt =azt + b + e +dr +e

3 Opérations sur les polynomes

3.1 Multiplication d’un polynéme par un scalaire
Soit A(X) = 3 axX* un polynéme & coefficients complexes.
k>0
Soit un nombre complexe non nul A # 0.
La multiplication de A par A est le polynome B = AA défini par :

B(X) =MA(X) = > bX* avec Vk by =\xa
k>0

Les deux polynomes sont donc de méme degré :

deg(AA) = deg A

Exemple 3.4
Soit P(X) =1+ 3X2%2+5X%. Le polynéme Q = 2P est défini par Q(X) =2+ 6X? + 10X*.

3.2 Addition de deux polynomes
Soient deux polynomes A(X) = 3 ai X* et B(X) = Y bpX*.

k>0 E>0
Soit S = A+ B le polynéme obtenu en sommant ces deux polyndmes.
S est défini par :

S(X) = Zstk avec Vk s, = ar + by,

k>0

On ne peut pas exprimer de maniere générale le degré du polyndéme somme en fonction des degrés des
polynémes A et B car il se peut que des mondmes venant de 'un et 'autre s’annulent. On peut juste dire le
polynéme somme est de degré inférieur ou égal au degré du polynéme de plus haut degré intervenant dans

la somme :
deg S < max(deg A ; deg B)
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Exemple 3.5
Soient les polynomes A(X) =2X +3X?, B(X)=1- X3, C(X) =2+ X2+ X3 :

o (A+B)(X)=1+2X +3X2— X3
o (B+C)(X) =3+ X2 est de degré 2 bien que B et C soient tous deuz de degré 3.
e (A+0)(X)=2+42X +4X2+ X3

3.3 Multiplication de deux polynomes :

Soient deux polynomes A(X) = 3 ai X* et B(X) = Y bp X*.
k>0 E>0
Soit R = A B le produit de ces deux polynémes.

R est défini par :
R(X) = Zrka avec Vk rp = Z a; X bj

k>0 iti=k

Le degré du polynoéme produit est la somme des degrés des polynémes intervenant dans la somme :

deg(R) = deg(A) + deg(B)

Exemple 3.6
Soient les trois polynémes P(X) =2+ X +3X?, Q(X) =1+5X +4X?2 +6X3 et H(X) = —X + X6.
Déterminer PQ), PH et QH.

3.4 Division par puissances décroissantes
3.4.1 Exemple introductif
Faire la division par puissances décroissantes de A(X) = —6X + 1 +4X3 par B(X) = X — 1+ X2

3.4.2 Méthode générale
Soient deux polynomes A(X) = 3 a X* et B(X) = Y bpX*.
k>0 k>0
Diviser A par B par puissance décroissantes, c’est trouver deux polynémes Q (quotient) et R (reste) tels
que :
A(X)=B(X)Q(X)+ R(X) avec degR < degB

Q(X) est le quotient de la division, et R(X) est le reste de cette division.
On démontre que R et (Q ne peuvent étre simultanément nuls.

Pour faire la division, on commence par ordonner les deux polynoémes par puissances décroissantes puis on
pose la division de A par B comme une division classique (faire appel & vos souvenirs de primaire!).

On dit que B divise A si le reste est nul.

Remarque 3.1
Cette division n’a d’intérét que si deg(A) > deg(B) (sinon Q est le polyndome nul).

Exemple 3.7
Faire la division par puissances décroissantes de —x® — x* + 2% + x par x + 2.
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3.5 Division selon les puissances croissantes
3.5.1 Exemple introductif
Faire la division par puissances croissantes de A(X) = —6X +1+4X? par B(X) = X — 1+ X? & I'ordre 2.

3.5.2 Meéthode générale

Soient deux polynémes A(X) = Y ap X* et B(X) = Y b X,
E>0 k>0
Diviser A par B par puissances croissantes a 'ordre n, ¢’est trouver deux polynémes @ et R tels que :

A(X) = B(X)Q(X) + R(X)

e deg@ < N
e R(X) peut étre factorisé par X"+ : R(X) = X" R(X)
Q(X) est le quotient de la division, et R(X) est le reste de cette division & 'ordre n.

Pour faire cette division, on commence par ordonner les polynémes par puissances croissantes.

La technique pour réaliser cette division est la méme que pour les divisions classiques. On s’arréte des que
le reste peut-étre factorisé par X" t!. Cette division ne s’arréte & priori jamais, et c’est I'utilisation que I’on
fera du résultat qui impose 'ordre auquel on décide de s’arréter.

A(B) | B(X)
Q(z)
R(X)
T
factorisable par X"*!

Exemple 3.8
Faire la division par puissances croissantes a U'ordre 3 de 1+ x par x% + 1.

4 Racines des polynomes et factorisation

4.1 Introduction a la factorisation

Factoriser un polynéme, c’est le mettre sous la forme d’'un PRODUIT de facteurs de la forme “(X - un
nombre)” ou “(aX? +bX + ¢)” avec a,c,b € R si le discriminant de ce dernier polynéme est négatif (dans le
cas de la factorisation dans R).

Exemple 3.9
o 203 —4x — 100 + 12 = 2(x — 1)(x + 2)(z — 3)
, 1, 1, 1\ . ) o
o 1°— 3% +x— 3= (x?+1) | x — 5 ) c’est une forme factorisée dans R car x°+1 a un discriminant
négatif.
, o , . . 1
Par contre dans C la factorisation serait (x + i)(x — 1) <L - 2)

e 22 —x+1=(x+1)(x—2)+ 3 n'est PAS une forme factorisée, a cause du “+3”.

o 3 +222+1x—-2=—(x—1)(2% -1 —2) n'est PAS une forme factorisée car le polynome x> —x — 2
a un discriminant positif et peut donc étre lui méme factorisé.
La forme factorisée est —(x — 1)(z + 1)(x — 2).
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4.2 Rappels pour les polynémes du second degré

Vous connaissez déja les définition des racines d’un polynoéme du second degré et de sa factorisation.
Soit le polynome P(X) = aX?+bX + ¢ avec a,b,c € C.

e Les racines du polynomes sont les nombres qui annulent le polynéme : X est une racine si P(Xg) = 0.
La détermination de ces racines se fait en calculant le discriminant. Un polynéme du second degré
possede deux racines simples ou une racine double dans R.

e Factoriser le polynéme, c’est le mettre sous la forme d’un produit de termes de la forme “(X — Xj)”.
Dans le cas ou P possede deux racines distinctes X et X, cette factorisation est :

P(X)=0a(X - X1)(X — X3)
Dans le cas ot P possede une racine double (discriminant nul),cette factorisation est :

P(X) = a(X — Xo)?

Exemple 3.10
Factoriser le polynéme A(z) = 32% — 4z + 1.

4.3 Racines d’un polynéme
4.3.1 Racine

Définition :

Soit un polynéme P € C[X].
On dit que X est une racine de P si :
P(Xy)=0

Les racines peuvent étre des nombres réels ou complexes.

Si X est une racine de P, alors il existe un polynome @ de degré n — 1 tel que :

P(X) = (X - X0)Q(X)

Exemple 3.11
Montrer que 1 est une racine du polynome A(X) = X3 + X2 + X — 3 et déterminer le polynome B(X) tel
que A(X) = (X — 1)B(X).

Propriétés :

1 Tout polyndéme de degré supérieur ou égal a 1 possede au moins une racine complexe.

N

2 Soit un polynéme a coefficients réels. Si ce polynéme admet une racine complexe, alors le
conjugué de cette racine est également une racine.
Ainsi pour un polynome a coefficients réels il y a nécessairement un nombre pair de racines
complezes.

4.3.2 Ordre de multiplicité d’une racine
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4.3.3 Définition :

Soit un polynéme A de degré n et Xy est une racine de A.
Le plus grand entier v tel que A(X) est divisible par (X — X()” est appelé ordre de multiplicité de la
racine Xj :
A(X) = (X = X0)"B(X) et B(Xo)#0
e Siv =1 on dit que Xq est une racine simple (ou d’ordre 1);
e Si v =2 alors Xy est une racine double (ou d’ordre 2);
e Si v =3 alors Xy est une racine triple (ou d’ordre 3);

e ctc...

La somme des ordres de toutes les racines est égale au degré du polynome :

Cela signifie qu’un polynome de degré 4 par exemple a nécessairement 4 racines simples, ou 2 racines racines
doubles, ou une racine simple et une racine triple.

Propriété :

X est une racine d’ordre v du polynéme A & A(Xg) = A'(Xp) = ...AV"D(Xp) =0

On peut utiliser cette propriété pour déterminer I’ordre d’une racine.

Exemple 3.12

Déterminer les racines des polynomes suivants et leur multiplicité :
o Alx) =% -3z +2
o B(z) =a* — 423 + 622 — 42 + 1

4.4 Factorisation d’un polynome

4.4.1 Cas général de la factorisation dans C

Soit un polynéme P de degré n, possédant des racines X; de multiplicité v;, et dont le coefficient du terme
de degré n est a,.

Factoriser le polynéme P, c’est le mettre sous la forme :

P(X) =a, [[(X - Xi)"

%

Exemple 3.13
Soit le polynéme P(X) = 3X3 —6X2 +3X — 6.

e On trouve comme racines 2, i et —i.
e Le coefficient du terme de plus haut degré est 3.

Donc la factorisation de ce polynome est :

3X? —6X? 43X —6=3(X —2)(X +i)(X —1)
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4.4.2 Cas de la factorisation dans R des polyndomes de R[X]
Exemple introductif :

Factoriser dans R le polynéme A(X) = 3X3 — 3X?% + 12X — 12.

Définition :

Soit P un polynéme a coefficients réels.
Les racines complexes des polynoémes & coefficients rééls sont nécessairement complexes conjuguées, donc si
on note X et Xy ces racines, on peut mettre P(X) sous la forme :

P(X) = Q(X)(X — Xo)(X — Xo)

Pour la factorisation dans R on ne veut pas voir apparaitre les racines complexes, donc on laisse (X —
X0)(X — Xp) sous la forme d’un polyndéme du second degré irréductible dans R :

P(X) = QX)(X* + | Xo|* — 2XR(Xo))

Exemple 3.14
Soit le polynome Q(X) = 2X° + 6X2% +8X + 4.

e —1 est une racine évidente.

o La division par puissance décroissante de 2X> +6X? +8X +4 par X + 1 donne X2 4+ 2X + 2. Ce
polynome de degré 2 a deux racines complexes : —1 +1i et —1 — 4

e Le coefficient du terme de plus haut degré est 1.

Donc dans C, la factorisation de ce polynome est :
2X3 +6X7+8X +4=(X+1)(X +1—i)(X +1+1)
Et dans R, la factorisation de ce polynome est :

2X3 +6X%+8X +4=(X+1)(X*+2X +2)
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5 Exercices du chapitre 3

Exercice 3.1
Soit un polynéme P € C[X] de degré N vérifiant I’équation suivante :

P(X?) = (X2 +1)P(X)

N .
On note a; le coefficient du mondéme de degré 4, si bien que 'on peut écrire P(X) = > a; X"
i=0

1. Déterminer les degrés des polynomes Q(X) = P(X?) et R(X) = P(X)(X? +1).
2. Montrer que 'on a nécessairement N = 2.

3. Déterminer ’ensemble des polynomes solutions de ’équation.

Exercice 3.2
Soit le polynéme P € C[X] de degré 3 vérifiant 3P(X) = (X + 1)P'(X).

Déterminer les solutions de cette équation.

Exercice 3.3
Dans chacun des cas suivants, donner le quotient et le reste de la division par puissances décroissantes de
A(X) par B(X) et préciser si B divise A.

L AX)=X*+12X% +5X% -7+ 19X et B(X) = X? -1+ 3X.
2. A(X)=X*—9X? —4X3+27X +38 et B(X)=X2-7— X.
3. AX)=X°+2-2X%et B(X)=X?+1.

Exercice 3.4
Effectuer les divisions par puissances décroissantes suivantes :

1. 4X5 —2X* +5X3 +4X + 2 par X2 + 1.

2. —2X% —2X* — X3 4+4X2%2 44X +3par X2+ X + 1.
3. —X64+3X2%2 —4X +1par X7 —4X°+1.

4. 2X* —3X3+4X% - 5X + 6 par X2 -3X +1

Exercice 3.5
Déterminer X\ pour que z* — 522 + 42 — X soit divisible par 2z + 1.
Trouver le quotient.

Exercice 3.6
Soient les polynémes P et ) définis par :

P(z) = 42% — ba® — 25 + 3z* — 2 Q(z) =z -2-2

1. Faire la division par puissances décroissantes de P(z) par Q(z).
2. @ divise-t-il P?

Exercice 3.7
Soit P(z) = 62® — 222 — ma — 2. Déterminer m sachant que P(x) est divisible par :

1. x+1 2. 2x —6

Exercice 3.8

Soient a,b € C.

Trouver une condition sur a et b pour que le polynéme P;(X) = X2 + 2 divise le polynome P»(X) =
X4+ X34+ aX?+bX +2.

Astuce : Poser la forme générale du polynéme quotient.
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Exercice 3.9
Effectuer les divisions par puissances croissantes suivantes :

1. X6 —2X*44+1+ X3 par X3+ X241 alordre 5.

2. X* —2X + 14 X? par X2+ X + 1 a l'ordre 2, puis & l'ordre 3.
3. 3+ X —2X3 par 3+ X & Pordre 4.

4. 14+ X par 1 + X* — X2 a Iordre 2.

Exercice 3.10
(Cet exercice est inspiré d’un TD de Dimensionnement et Opérations Unitaires de 2éme année).

Dans le systéme suivant, déterminer les valeurs de x; et y;, qui représentent des fractions molaires (donc
comprises entre 0 et 1) :

o T

yl_l—l—(a—l)xl

o + K*x + K

0 ysz 1 ylL

Avec :

e o =259 o 7o = 0,961
e V =300 mol/h
e L =150 mol/h e yo =0,535

Exercice 3.11
Factoriser les polynémes suivants :

1. B(X) = %Xz + X —4 dans R.

2. A(X)=2X3+3X2—-10X dans R.

3. P(X)=X*-3X2%—4dans C et dans R.
4. Q(X)=X3—iX%+ X —i dans C.

5. R(X)= X3 +1 dans C.

6. S(x) = 2* — i dans C.

Exercice 3.12
Dans chacun des cas suivants, déterminer la multiplicité de la racine Xy du polynéome P et donner la
factorisation de P :

. P(X)=X*—X3-3X2+5X —2et Xo=1.
2. P(X)=X3—iX?+ X —iet Xo=1i.

Exercice 3.13
Factoriser le polynome P(X) = X* — 2X3 +2X — 1.

Exercice 3.14
Factoriser les polynomes suivants :

1. X%+ 3X% +4X3 +4X? 13X + 1 dans R[X].
2. 2X3 —2iX? +2X — 2i dans C[X].

3. X%+ 1 dans C[X].

4. X3 44X dans R[X] et dans C[X].

Exercice 3.15
Montrer que pour tout n > 2, (z + 1)?" — 22" — 2z — 1 est divisible par z(z + 1)(2z + 1).

Exercice 3.16
Montrer que 2"t — 2™ — 2 + 1 est divisible par (z — 1)2.
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Exercice 3.17
Une entreprise fabrique une quantité p d’un produit, compris dans Uintervalle [0; 20].
Le cotuit de production, exprimé en milliers d’Euros, est donné par :

c:pc(p) = p® — 30p* + 300p

Chaque produit est vendu & un prix de 84000 euros.
1. Exprimer en fonction de p le chiffre d’affaire total r(p) en milliers d’euros.
2. Exprimer en fonction de p le bénéfice b(p) = r(p) — c(p).
3. Déterminer les racines du polynéme b.
4

. Déterminer a quelle condition ’entreprise est rentable.

Exercice 3.18

(Inspiré d’un TD de Chimie du semestre 1).

I’acide oxalique est un diacide que 'on notera HyA. Ses pKa valent pKaA; = 1,20 et pK Ay = 4,30. On
veut calculer le pH de différentes solutions de cet acide.

Concentrations :
e La concentration de la forme acide est notée [HyA|.
e La concentration de la forme amphotére est notée [HA™].
e La concentration de la forme basique est notée [4%~].
e La concentration en ions H3O™ est notée h.
e La concentration en ions HO™ est notée w.
e la concentration totale en diacide est notée c.

On rappelle les définitions des pKa :

h[HA™]
Kag = ———— Ka, = —log K
o Kaj [HQA] et pKay og 1Lay
h[A%~
o Kay = [f[IA—} et pKas = —log Kas

e Ke=hwet pKe=—logKe=T7

On rappelle que le pH de la solution est donné par pH = —log h ol h est exprimé en mol/L.

On a une solution avec une concentration initiale d’acide oxalique de 0,0100 mol/L, ce qui laisse supposer
une prédominance de la forme acide et un comportement de monoacide. Dans ces conditions :

e Un bilan de matiere aboutit & la relation ¢ = [Ho A] + [HA™]

e Un bilan sur les charges aboutit a la relation h = [HA™]

1. Montrer que 'on a alors h? + Ka h — Kaic = 0.

2. Résoudre cette équation afin de déterminer h. En déduire le pH.

Exercice corrigé 3.1
Montrer que nz"*t! — (n 4+ 1)z™ + 1 est divisible par (z — 1)2.

On calcule n x 1™ T1 — (mn+1)x1"+1=n—(n+1)+1=0donc nz™tt — (n 4+ 1)z™ + 1 est divisible par x — 1.
La division donne :
) 3 .

nz™tt — (n+1z" +1=(xz—1)(nz" — 2" L_gn=2 _n 3. — 1)

On chercher si ce quotient est lui méme divisible par z — 1. On calcule :
nx 1" 1" 1" 1" 1 =n—nx1=0
ntermes

donc na™ — "1 — 2" 72 — 2" 3. — 1 est bien divisible par z — 1.
On a donc montré que nz" L (n+ 1)z™ + 1 est divisible par (z — l:)g.

Exercice corrigé 3.2
Soit P(X) = 6X3 — 2X2 — mX — 2.
Déterminer m sachant que P(X) est divisible par X + 1.
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On pose la division :

X3 —2X7? —mX —2 | X +1
—(6x*3 +6X7?) 6X? —8X —m+8
—8X2%2— —mX -2
—(—8x7? —8X)
(—=m +8)X —2
—(—m+8)X —-m+38
m — 10

X + 1 divise P(X) si le reste est nul, ce qui n’est possible que si m — 10 = 0 = 4

Exercice corrigé 3.3

On mélange en volumes égaux une solution d’acide chlorhydrique & 0,01 mol/L avec une solution d’acide
acétique & 0,1 mol/L.

Alors la concentration en ions HzO%, notée ¢, obéit & ’équation suivante :

2 4+0,0lc—1,8107%=0
Calculer le pH de la solution.

On rappelle que pH = — logc.

On calcule le discriminant de cette équation du second degré :

A=0,01"+4x1,810 % =1,072.10"* = (0,01035)>
Formellement, cette équation a deux racines :

—0,01 —0,01035 i —0,01 + 0,01035 -4
o=—"]> "= —0,020 et c2 = T 3,54.10

. 4 . . . oy « 4
Mais comme c représente une concentration, elle est nécessairement positive, donc ¢ = 3,54.107 ~.

On calcule alors pH = — log(3, 54.10’4) —

Exercice corrigé 3.4
Factoriser dans R :

L —X?+2X -1 2. X* -1 3. X4 -1 4. —X® +2X* 1
1. On reconnait une identité remarquable : —X?42Xx 1= —(X — 1)2
2. [ X2 —1=(X+1)(X-1)

3. Onpose Y = X? :

X'171:)/271:(y+1)<y71):(x2+1)()<271)ﬁ‘x"'71:y271:(1\3+1)()<+1)()<71)

4. On pose Z = X* :

XS 42Xt - 1=-2242Z7-1=—(Z-1)2=—(X*-1)? = - (X2+1)(X+1)(X -1))°

= -Xx%ox? 1= (X2 + 1) (X +1)%(X —1)?

Exercice corrigé 3.5
Soit P(x) = (z+1)" —2" —let j=¢

Quel est le degré de P?

Montrer que 1+ j = —j2

27
3

Montrer que j est une racine de P et déterminer sa multiplicité.

i2

En déduire que e est également une racine et donner sa multiplicité.

Trouver deux racines réelles évidentes de P.

A A

Donner la factorisation de P dans C.

1. Le premier terme du développement de (z + 1)7 est z”. Ce terme s’annule avec le suivant, donc P est un polynoéme de degré 6.
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5.
6.

om N 2 ; R
o (fFY e oL
2 2
1+j=1+e% 1+\/§‘ ! ‘/5‘+l
L] 71 = e = —_—— = = —1 —
/ 2 T2 2'T3
‘ 3.1
On a donc bien l+‘j:7jz:§i+§

PG =0G+1) " —i"=1=(—5)"—j"-1=—"—j"-1=—¢""5 -5 —1=-¢'3 -3 1=+

donc j est bien une racine de P.

On utilise la méthode des dérivées pour trouver sa multiplicité :

. N - \ ” 3 12 2127 ;127
o P(j) =71 +4)° -7 =712 — 756 = 750 — 1) = 7' 5 (e ER 1) —0care 3 =1
_ ~ . ~ - 107 10 4 e
o P/(j) = 42(1 + §)° — 425% = —42j10 — 4255 = —425(;% + 1) = —42e’ 7 (e"T" . 1) — —42¢'F (e’:TT - 1) £0
;am 1 V3,
car e 3 = —— — 7
2 2

La dérivée premiere est la premiere dérivée qui ne s’annule pas en j, donc j est une racine d’ordre 2.

P étant un polynome a coefficients réels, si j est une racine double, alors j est également une racine double.

2T .
Donc e "3 est une racine double de P.

0 et —1 sont deux racines de P.

On a trouvé les 6 racines de P, donc on peut directement écrire sa factorisation :

P(z) =Tz(zx+1) ((1: _F )2 (:1: — sfl%)Z

Exercice corrigé 3.6
Trouver le reste et le quotient de la division du polynéme 7z# — 323 — 222 4+ x — 5 par successivement = — 3,
r+2,2x—3et 3z +1.

7zt — 32% — 222 4 2 — 5 = (z — 3)(7z® + 1822 + 52z + 157) + 466

72t —32° — 222 + 2 — 5 = (z + 2)(7303 — 1722 + 322 — 63) + 121

15 , 37 19 277
—X xr — —
8 16 16
16 , 2 29 434

r T4+ —) —
9 27 81 81

- . 7 .
Tat =32 — 222 42 —5 = (2z — 3)(5.’17'3 +

7
7ot —32% —22% 42— 5= 3z + l)(g.’n3 —

Exercice corrigé 3.7
Calculer le quotient et le reste de la division de 22® + a?® par 2% — a* ol a est une constante quelconque.

4 4

6
22 — a2t = (2% — a*) (@ + 02?0 4 @B 4 0221 4 0008 4 a0zt + a?t) = 3 atheiA
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Chapitre 4

Fractions rationnelles

1 Fractions rationnelles

1.1 Définition

Une fraction rationnelle F'(X) s’écrit sous la forme F(X) = ou N et D sont deux polynomes de

degrés quelconques, D n’étant pas le polynome nul.
e D est appelé dénominateur de la fraction rationnelle

e N est appelé numérateur de la fraction rationnelle

Une fraction rationnelle est donc finalement définie comme le quotient de deux polynomes.

Exemple 4.1 X2 1 X3
o F(X)= o

3X +1

1.2 Opérations sur les fractions rationnelles

Ny (X)
Dy (X)

et FQ(X) =

Soient deux fractions rationnelles F(X) =

1.2.1 Addition de deux fractions rationnelles

_ MN(X) | Na(X)  N(X)Da(X) + No(X) Dy (X)

(F1 + F)(X) = Fi(X) + Fa(X) = Dr(x) T Da(x) Dy (X) Dy (X)

Il s’agit de mettre les deux fractions sous le méme dénominateur.

Exempleyd-2 v 1 (X 43)-(X-1(X2+1)  —X3+42X2 42X +1

*X2r1 X+3 (X2 +1)(X +3) T X3 43X2+X+3
1 N 2X 1+2X(X 1) 2X%2-2X+1
° = = -
X2-1 X+1 X2+1 X2+1
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1.2.2 Multiplication de deux fractions rationnelles

(F x Fo)(X) = Fi(X) x Fa(X) = ) X _ f(;

Exemple 4.3

X XXf17 X2 - X
X241 X+3 X343X2+X+3

1.2.3 Simplification d’une fraction et fraction irréductible

Si le numérateur et le dénominateur ont au moins une racine commune, alors la fraction rationnelle peut
étre simplifiée.

Dans ce cas, on peut trouver un polynéme R(X) tel que N(X) = N(X)R(X) et D(X) = D(X)R(X).

On peut alors simplifier la fraction F(X) :

N(X) N(X
Fon - MO0 _ N
D(X)  D(X)
e : L : : N(X
Si D et N n’ont aucune racine commune, alors on a simplifié F' au maximum, et on dit que D(X) est une

fraction rationnelle irréductible.

Exemple 4’4;53 192

Soit F(x) = -

203 — 322 — 20+ 3"

e La factorisation de x3 + 22? — x — 2 donne (v — 1)(z + 1)(z + 2)
e la factorisation de 223 — 3z% — 2x + 3 donmne (z + 1)(z — 1)(2z — 1)
T+ 2

On a donc F(z) = 5y 1"
x—

1.3 Partie entiere d’une fraction rationnelle

N(X
Soit la fraction rationnelle F'(X) = TX;
On note E(X) le quotient et R(X) le reste de la division par puissances décroissantes de N (X) par D(X)

La fraction rationnelle se réécrit :

_ R(X)
FX)=EX)+ D(X)
e E(X) est appelé partie entiére de F
R(X) S .
°D X) est une fraction irréductible telle que deg R < deg D.

Remarque 4.1
e degN <degD = EX)=0
e degN=degD = FEX)= lim F(X)=a€eC

X —o00

Exemple 4.5

.2
. . 4 z“+4
e Soit la fraction rationnelle :
x—3
Le degré du numérateur étant supérieur a celui du dénominateur, la partie entiére est non nulle.
La division par puissances décroissantes de x? + 4 par x — 3 donne un quotient de x + 3 et un reste

de 13. )
m 4
Done Tt T+ 3+

. «

r — Xr — «

. La partie entiére est (x + 3).
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222 4+ 4
° .

2?4+ 1
Le numérateur et le dénominateur étant de méme degré, la partie entiére est la limite de la fraction
222 4+ 4
en Uinfini : lim Z; =2.
: z—+oo 12 4+ 1
La partie entiere est 2.
22?4+ 4 2
On a2x?+4=2x%+1)+2 donc — =24 —
x?+1 x?+1

1.4 Poles et racines d’une fraction rationnelle

1.4.1 Racines d’une fraction rationnelle

Comme pour un polynéme, on dit que Xg est une racine de F si :
F(Xy)=0

Les racines de F' sont bien évidemment les mémes que les racines de V.

1.4.2 Poles d’une fraction rationnelle

N(X)
D(X)
e Les racines du polynéme D (qui ne sont donc pas également des racines de N puisque la fraction est
irréductible) sont appelées poles de la fraction rationnelle.
Donc Y est un pole de F' si :

sous sa forme irréductible.

Soit une fraction rationnelle F(X) =

D(Y()) =0 et N(Yo) 7é 0

e Si Y est une racine de D d’ordre «, on dit que Yy est un pole d’ordre a.

Exemple 4.6X

*Xrn(xXzy1)
La factorisation du dénominateur donne (X +1)(X? +1) = (X + 1)(X +4)(X —i).
Dans R : —1 est un pole simple.
Dans C : —1, i et —i sont des péles simples.

X -2 )
*X(xzo12
La factorisation du dénominateur donne X(X? —1)? = X(X +1)3(X —1)%
Dans R et dans C : 0 est un pole simple, 1 et —1 sont des péles doubles.

2 Décomposition en éléments simples des fractions rationnelles

2.1 Pourquoi décomposer une fraction rationnelle ?

Décomposer une fraction rationnelle c’est 1’écrire comme une somme d’autres fractions rationnelles, ce qui

la rend plus simple & étudier et/ou & utiliser.
5% — 12
Par exemple, on ne sait pas & priori calculer une primitive de la fonction f(z) = i
x3 —4x

3
Mais si on la met sous la forme f(z) = —+ (vérifier que c’est bien le cas!) les primitives se calculent
x

[
facilement :

/f(:r) dz = 31n|z| 4+ In|z? — 4| + cste

Les décompositions ne sont pas uniques. Par exemple pour la fraction rationnelle précédente on aurait pu

x—2+x+2'

écrire f(x) = 3 +
x
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La décomposition en éléments simples est une décomposition particuliére, qui permet notamment de
se ramener a une forme qui permet de calculer les primitives. Elle est également utile pour la transformation
de Laplace (voir Semestre 2).

2.2 Décomposition en éléments simples
Soit une fraction rationnelle irréductible F(X) = ggg
La DES se fait en quatre étapes :

1 Déterminer la partie entiere

2 Factoriser le dénominateur

3 Poser la forme générale de la DES

4 Déterminer les coefficients

La DES n’est pas méme dans R et dans C car la factorisation est différente.

2.2.1 Premieére étape : Déterminer la partie entiere.

On note F la partie entiere de F', si bien que F(X) peut s’écrire :

R(X)
D(X)
santes de N(X) par D(X).

ou est une fraction rationnelle irréductible, R(X) étant le reste de la division par puissances décrois-

R(X)
D(X)

C’est finalement la fraction rationnelle qu’il faut décomposer en éléments simples.

Ex'emple 4'7X5+2X372X2+2X
Soit Fy(X) = Xi_1 .

La division de X°+2X3—2X?42X par X*—1 donne un quotient égal & X et un reste égal a 2X°>—2X?+3X
donc :

2X3 —2X2%2 43X

F(X)=X
1(X) i X4

2.2.2 Deuxiéme étape : Factoriser le dénominateur.

R(X)

On note X; les poles de la fraction irréductible m

, chacun de multiplicité «;.

e Sur R:
Le dénominateur peut se mettre sous la forme :

DX) =A]J(X = X)* [[(X* +p; X +q;)%

J

Les polynémes X2 + p; X + ¢; sont des polynomes irréductibles dans R.

On a alors :
R(X)

F(X) :E(X)+ /\Hi(X_Xi)a,: Hj(X2 +ij+qj)ﬂj

Exemple 4.8

Pour la fraction Fy précédente : X* —1 = (X2 +1)(X%2 - 1) = (X2 + 1)(X + 1)(X — 1). Donc :
3X3 —2X?% +3X

(X2+D(X +1)(X-1)

Fi(X)=X +
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e Sur C:

Dans C les polynémes du type X2 + p;j X + q; précédents, qui sont irréductibles dans R, ont deux

racines dans C.

On note toujours X; les racines réelles et o; leur multiplicité, et on note Z; les racines complexes de

multiplicité g;.

Le dénominateur peut se mettre sous la forme :

X) = AT[x - X TTex -

On a alors :

R(X)

FX)=EX)+

Exemple 4.9

ML = Xa)o [ (X = Z;)%

Pour la fraction Fy précédente : X* —1 = (X +4)(X —4)(X +1)(X —1). Donc :

3X3 —2X2% +3X

Fi(X)=X +

2.2.3 Troisieme étape : Poser la forme générale de la décomposition en éléments simples

X+)X )X +1)(X 1)

Les poles et leurs multiplicité ayant été déterminés, on pose la forme générale de la DES.

e Sur R :

ipX + b;
F(X) = +ZZ +ZZ X2afij Jiqu)p

A Aqo la
= FB(X L
My T xoxe T X
Aoy Aso Asq,
XX T o) T T Xy
+...
a1 X + b1 a12X + b1 a15, X + big,

X24+pmX+qa X24+pX+q)?

a1 X + by a22X + baa

X2+ pX+q  (X24+p2X +¢2)?

+...

ou les A;, b; et a; sont des constantes réelles.
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e Sur C:

a; Bj
~ Ay Bjp
F(X) = E(X)+ZZ(X_X)k +ZZ(X—Z)P
i k=1 v J = J
A Aio Al
- B(X L
M s T xoxe T o x)
Aoy Ago Azq,
XX T XX T T S Xy
to.
B B By,
X T xoaer ot xx—
By Bas Bag,
XL T x-—nr T -

+...

ou les A;j, sont des constantes réelles et les Bj, sont des constantes complexes.
Remarque 4.2

Dans le cas de deux pdles complexes conjugués, les constantes B; correspondantes sont également
complezes conjuguées.

Autrement dit :

e A chaque terme du type (X — Xj) de la factorisation on associe un terme de la forme X _x. ou A
— Xo
est une constante qu’il faudra déterminer par la suite.
A
e A chaque terme du type (X — X)™ de la factorisation on associe n termes : e —1X0 + X 2X0)2 +
A A,

m + ..+ X - }Ol)nﬂ + X - }0)” ou les A; sont des constantes qu’il faudra déterminer

par la suite.
e A chaque terme du type (X2 + pX + ¢)" de la factorisation on associe n termes : M

y " X2+ pX +¢q

as X + by a3 X + b3 Ap-1X +bp_1 ap,X + b,
(X24+pX +q)? (X2+pX+¢q3 =~ (X24+pX+qgm ! (X24pX +q)"
des constantes qu'il faudra déterminer par la suite.

En général, dans ce dernier cas, dans tous les exemples que l'on traitera on aura n =1

ou les a; et b; sont

Les fractions rationnelles de la forme sont des éléments simples de 1°"¢ espéce d’ordre k.

ik
(X — X;)*
ajpX + bjp

Les fractions rationnelles de la forme
(X2 +ij + q]')ﬁj

sont des éléments simples de seconde espéce.

Exemple 4.10
1. Pour la fraction Iy précédente :

A B X +b
oSurR,~F1(X):X+X+1+X71+§(2jr_1 avec A; B; a; b= cstes

A B C c
.SU/I*C:Fl(X):XJrX—&—l+X—1+X+i+X—i avec A; BeRetCeC

3X +1 _
(X +6)(X —2)3(X +2)(X —4) °
La partie entiére est nulle et le dénominateur est déja factorisé :
A B Bs Bs C D

T Xt6 X—2 (x—27 (x—28 Txt+2Tx_4

2. Fy(X) =

Fy(X)
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1
(X +1)(X2+3)(X 1)
La partie entiére est nulle et le dénominateur est déja factorisé :
A . B . aX +0b
X411 X-1 X243
B 5X3 +8X2%2 —4X —1 ‘

3. F3(X) =

F5(X) avec A; B; a; b= cstes

L Fy(X) = -
4 Fa(X) X(X —1)(X +1)2
La partie entiére est nulle et le dénominateur est déja factorisé :
A B C1 CV2
Fi(X)=— A; B; Cy; Cy=cst
1(X) X+X—1+X+1+(X+1)2 avec A ; B ; Cy ; Cy = cstes
1 A A*
5. F5(X) = X211 X192 + X2 ot A est une constante compleze.
1 A B B*
6. Fs(X) = = + avec A€ R et BeC.

(X —2)(X2+2X+2) X -2 X+1—i+X+1+i

2.2.4 Quatriéme étape : Détermination des constantes

Premiere méthode : Constantes de éléments de premiére espece d’ordre 1 et des termes de
plus haut degré des poles multiples

Cette méthode peut étre utilisée :

e Pour les poles simples a : les éléments simples correspondant sont de la forme

e Pour les termes de plus haut degré des poles multiples b de multiplicité g : les éléments simples

B
correspondant sont de la forme ﬁ
Exemple 4.11 - v3 5
X°+8X —-4X -1 A B C C
Considérons Fy(X) = OX(;_ (X + 1) =5 + X1 + X _i T + X +21)2 (voir exemple précédent).

Cette méthode permet de déterminer A, B et Cy, mais pas Cf.

La méthode est la suivante :

e Ecrire I’égalité entre la fraction rationnelle et sa décomposition.

A
e Pour chacun des termes du type X multiplier & gauche et & droite par (X —a) et poser X = a, de
—a

telle sorte que dans la décomposition tous les termes sont nuls sauf celui correspondant au coefficient
cherché A.

De méme pour chacun des termes du type , il faut multiplier a gauche et a droite par

B,
(X —b)*
(X — b)® et poser X = b, de sorte que dans la décomposition tous les termes sont nuls sauf celui
correspondant au coefficient cherché B,,.

Exemple 4.12

=YV 3 2 _ o
7 F4(X):OX +8X 4X 1714 B Cl CQ

X(X —1)(X +1)2 *Y+X—1+X+1+(X+1)2

o Détermination de A :

5X3 +8X2 —4X —1
XFy(X) = (X—lP(X—s—l)Z A+X(

= XF(X)|ly_o=

IS S
X1 X+1 (X+1)2

Ix1
— A=1
e Détermination de B :
5X3 +8X2 —4X —1 A 4 Cy
X —1DFy(X) = =B X -1 —
(X = 1FX) X(X 1 1) + )(X+X+1+(X+1)2>
8
= (X_l)F4(X)|X:1:Z:B

— B=2
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o Détermination de Cy :

5X% +8X% —4X —1 A B c
X +1)2F,(X) = - x+12 (4
(X + 1)?Fy(X) X(X-1) G+ (X+1) <X+(X—1)+X+1>
6
= (X +1)F(X)|, , =5=0C

2
= (9 =3

e A ce stade on ne sait pas encore comment déterminer Cy.

1 2 (o 3
D Fy(X)=— .
one BX) = ¥ Tt X1 T Xt
1
2. F5(X) = ——— :
"X = w2

e La partie entiere est nulle.

e La factorisation du dénominateur donne X? + 4 = (X + 2i)(X — 2i) :

1

B = o )

e On note que les deux poles complexes sont conjugués l'un de l’autre.
*

Done F5(X)

— 1 A est une constante complexe.
X12i T x g onAety r

e On détermine A par exemple par la premiere méthode présentée dans la partie précédente :

1 1 7 )
[ — A= — = — — A* = ——
(X—Qi) e 9 —43 4 4

A= F5(X)|xo_g; =

Donc la DES de F5(X) est : ‘ ‘
i i
Fs(X) = -
5(X) 4(X +2i)  4(X —2i0)

1
(X —2)(X2+2X+2)°
La partie entiére est nulle.

La factorisation du dénominateur donne (X —2)(X2+2X +2)) = (X —=2)(X +1—i)(X +1+1).
Donc :

3. Fs(X) =

1
(X —2)(X+1—0)(X+1+1i)

On note que les deux poles complexes sont conjugués l'un de 'autre.

A B B
D Fs(X) = AcR et BeC.
onc Fg(X) X72+X+17i+X+1+i avec e

On détermine les constantes :

Fo(X) =

1
A= (X~ 2)F6(X)|X:2 = 10
. 3i—1
B=(X+1- Z)FG(X)|X:—1+i = o0
. 73i+1
20
1 3t—1 Ji+1

TI0X—2) 00X +1-0) 20X +1+41)

4. Déterminer la DES de Fy sur R et sur C.

Done Fg(X)
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Deuxiéme méthode : Donner des valeurs particulieres a X

S’il ne nous reste qu’un ou deux coefficients & déterminer, on peut choisir de donner des valeurs particulieres
aX.

Cette méthode permet notamment de déterminer les constantes des poles de second espéce.

La méthode est la suivante :
e On écrit I'égalité entre la fraction rationnelle et sa décomposition en éléments simples.

e S’il ne reste qu'un coefficient, on donne une valeur particuliere a Xet grace a I’égalité entre la fraction
rationnelle et sa DES, on peut déterminer ce coefficient.

e S’il reste deux coefficients, on donne deux valeurs particulieres a X et grace a 1’égalité entre la
fraction rationnelle et sa DES, on obtient un systéme de deux équations dont les deux inconnues sont
les coeflicients a déterminer.

Attention, on ne peut pas donner comme valeur particuliére un péle de la fraction rationnelle !

Exemple 4.13
Pour le coefficient Cy de la fraction Fy précédente, on peut par exemple poser X =2 (0, 1 et —1 sont des
valeurs interdites) :

£(2)75><23+8><22—4><2—171+ 2 G 3
! 22— 1)(2+1)2 T2 21 241 (2+1)2
T 1T G
6. 3
_. G2
3 3
— Cl—Q
1 2 2 3

XX 1 TX 1 T e

Done Fy(X)

Troisieme méthode : Méthode générale pour les poles multiples

Pour des poles de multiplicité «, la premieére méthode ne permet & priori de déterminer que le coefficient
A, mais pas ceux des termes d’ordres inférieurs. La méthode suivante permet de déterminer d’un seul coup
tous les coefficients des poles multiples.

N(X
Soit une fraction rationnelle irréductible F(X) = DEX)) possédant un pole a de multiplicité a.
Alors on peut ’écrire :
N(X)
F(X)= d
(X) (X — a)nd(X) avec d(a) #0

La décomposition en éléments simples permet par ailleurs d’écrire :

XooF

ot R(X) est une fraction rationnelle égale & la somme de tous les autres termes de la DES.
En égalisant ces deux relations on a :

NX) oA
X —aedx) OOt S X —ay
& T (j(()) — R(X)(X —a)* + zz;l A(X —a)o

On fait le changement de variable h =X —a (& X =a+h) :

N(a+h)

Tt = E(a+ h)(h)* + Z} Apo?
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On reconnait la forme générale de la division par puissances croissantes & 'ordre a— 1 du polynéme N (a+h)
par le polynéme d(a + h).

Le coefficient du terme de degré i de la décomposition en élément simple (4;) est celui se trouvant devant
he—t,

Effectuer la division par puissances croissantes de N(a + h) par d(a + h) permet donc d’identifier ces coef-
ficients.

Exemple 4.14

X?-2X+1
On cherche la décomposition en éléments simples sur R de G(X) = -

X(X —2)3
La forme générale de la DES est :

- A1 A2 Ag B
X =y ST T T T X

1
Par la premiere méthode on détermine B = —3
Pour les coefficients A; :
o On multiplie les deur expressions de G par (X —2)3 :

3 X?-2X+1 B(X —2)*

G(X)(X —2) < AY(X —2)2 4 Ax(X —2) + A3 + %
e On fait le changement de variable h=X —2 < X =h+2 :
(h+2)2—-2h+2)+1 ) Bh? h? +2h +1 ) Bh3
=A1h*+ Ash+ A =A1h+ Bh*+ A
h+2 e R s T A

On doit donc faire la division par puissances croissantes & lordre 2 de h? + 2h + 1 par h + 2.
1 3h  h? h?
On obtient 1 +2h+h* = (2+h) =+ —+ — | — —.
n obtient 1 + 2h + h (+)<2+4+8> 3

On identifie les coefficients :

On a donc finalement :

2.3 Lien entre les décompositions en éléments simples sur C et sur R

On peut se servir de la DES sur C pour écrire la DES sur R.
Les termes de premiere espece correspondant a des poles réels sont les mémes.

Pour les termes correspondant a des poles complexes, ils s’écrivent dans R :

aX +b

- .b R
Xipx+q UC

Et dans C :
A B

X -7 +X—Zg
Avec X2+ pX +q= (X — Z1)(X — Zo).

A; BeC
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Ces deux termes sont égaux, donc on a :

aX +b _ A n B
X24pX+q X-2, X—-2,

En réduisant le terme de droite au méme dénominateur on obtient :

aX +b AX — Zo)+ B(X — 7)) (A+B)X — (AZy + BZy)

X2+ pX+q (X —=2)(X —Zy) X2+ pX +gq
En identifiant les numérateurs on a :
a=A+B
b= —(AZ, + BZ5)

Ainsi on peut déterminer les coefficient des termes de seconde espece (a et b) a partir des coefficients
complexes de la DES sur C.

Exemple 4.15

Soit F(X) = X

(X2 +4) (X +1)
Dans R, la DES s’écrit :

A aX +b
FIX)=—+ —— A;a:beR
X =57 x2 G5 0€
Dans C la DES s’écrit :
A B B*

F(X) AeR BeC

TX+1 T Xt T x—2

Dans les deux cas le coefficient A correspondant au pole réel est bien le méme.

Déterminons les coefficients de la DES sur C :

1
A= (X+DF(X)|[x__, = _§
. + 21
B=(X+2))F(X)|x__ 9= —7—
. 10
. 1—22
10
1 142 1—2¢
Donc F(X) = — .
one FIX) = —sx 71t Tox £20) T 10(x = 2)
1+ 22 1—22
En réduisant 10();_+22i) + 10(X 7227:) au méme dénominateur on a :
1+ 24 . 1-2 X+4
10(X +26)  10(X —2i)  5(X2+4)
X +4 1 4
On identifie donc - =aX+b=a=_ et b=_.
5 5
La DES sur R est donc : oy )
F(X)= —— 12

5(X2+4) 5(X+1)
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3 Primitives des fractions rationnelles réelles

Avant de chercher & intégrer une fraction rationnelle, il faut toujours commencer par écrire sa décomposition
en éléments simples, et c’est sous cette forme qu’il faut intégrer.

3.1 Primitives des éléments de premiére espece
Ce sont les éléments de la forme ——— aveca € Ret n € N.

(X —a)"

Cette intégration ne pose pas de probleme :

X
oPourn:l:/

dt = Aln|X — a| + cste

(t—a)
X
A 1 A
. Pourn>1./ mdt——n_l(X_a)n_l—i-cste

Exemple 4.16

: : 32?2 42
On cherche la primitive de la fonction f :x G

(x —1)3
3 6 5

e la DES donne f(z) = po + @12 + EEIE

e On a alors :

X
, - 6 5 5 12X — 7
/ f@®)dt=3In|X —1] — X-1 X -1y +cste=3In|X — 1| — X —1)2 + cste

3.2 Intégration des éléments de seconde espéece de multiplicité 1

X +b
Ce sont les éléments de la forme 2(17—’— oll X2 + pX + ¢ est un polynéme irréductible dans R.
X2+pX +q

Pour le calcul de la primitive, on décompose cette fraction rationnelle de la fagon suivante :

X X X
Fb 21 b—ap/2
I:/ _atth dt:/ @_2t+p dt+/ b—apj2 dt:%fﬁ(b—@)h

2+ pt+q 2624+ pt+q t2 4+ pt+q 2
X X
2t 1
Avec I :/ 2P g e 12=/ —dt
t2 + pt + q 2+ pt+q

Il faut donc calculer ces deux primitives :

X
2t +p 2
L = ——dt =In|X X t
L4 1 / t2+pt+q n| +p +q|+c3€

e Le calcul de I est un peu plus complexe et nécessite un changement de variable .

2

2
Onat®+pt+q= (t+§) +q_pZ'

Or le discriminant du dénominateur est nécessairement négatif puisque par hypothese le dénominateur
n’est pas factorisable dans R :

2 P2
p°—49< 0= q— 5 >0

2
On pose alors 62 = ¢ — (g) >0,etona:

124 pt+q = (t+§)2+62=62 {512 (t+g)2+1]

42 BASTIEN MARGUET, MATHEMATIQUES



On fait le changement de variable :

t=dou—

uz%(t—kg) & 4t =ddu

b
2

2 +pt+q=05w?+1)

De sorte que :
Wxes) L) | Lo b
IQ = / médu = g/ mdu = g arctan (6 (X + 2)) + cste

Pour résumer :

ap p
at+b a 9 b_E X+§
—————-dt = S In|X? + pX + ¢| + ———==—= arctan | ———=—= | + cste
(2 +pt+q)n 2 P\2 P\?
(3) 0 (3)
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4 Exercices du chapitre 4

Exercice 4.1

Ecrire les fractions rationnelles suivantes comme la somme de leur partie entiére et d’une fraction rationnelle
irréductible.

3 +5x+5
L B@)=—-7—
5 Fz(x):x6+2x5+2x4+5x3+10x2+5x+1

e+ 1)?

Exercice 4.2
Mettre chacune des fractions rationnelles suivantes sous forme irréductible dans R[X] :

X3 -X?2+X-1

1.
X3-1
X3 —-3X+2
T X4 -5X244°

Exercice 4.3
Soient les fractions rationnelles suivantes :

o Fi(z) = mi)z—;—ax)
* Blw) = . ;24f24; iz;l
. Fy(z) = %

Donner sans chercher & déterminer les coefficients la forme générale de leur décomposition en éléments
simples dans R et dans C.

Exercice 4.4

2
1
Soit la fraction rationnelle F'(x) = vt

3 — 622+ 11z —6

1. Déterminer la(les) racine(s) de F' sur R.
2. Montrer que 1, 2 et 3 sont des poles de F.

3. Déterminer la décomposition en éléments simples de F' sur R.

Exercice 4.5
Décomposer en éléments simples sur R :

2X%2 -5X — 11 X245
L RA(X)="" R (X) = —
)= ox 3 7. Fa(X) (X —1)*
X -X?+X
2. Fy(X) = 27
2( ) (1—X2)(2X—1) 8. F8<X):(X+1)3(X,2)
X +5
CF(X) =
3. F3(X) X2 44X +4 9 F(X):(X2+1)2
4. Fy(X) = X3 17X + 12 Y (X —1)6
COA T X3 3X2 —0X 27 X2 _ 4
2X 10. Fio(X) =
. F5(X) = —1)2 3
5. F5(X) XZra) X -1 (X —12(X +1)
2X3 — 3X2 46X — X +1
6. Fy(X) = 3X° 46X — 30 11. Fi1(X) =

X3 —3X2+6X — 18 (X —1)*(X —2)2

Exercice 4.6
Décomposer en éléments simples sur C puis sur R :
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4X2+2 4X2%2 - 10X 4+ 20 X2 4+4X +6

1. Gl(X)Im 2. G2(X): (X2+4)(X—3) 3. G3(X):_X3+2X+2X2

Exercice 4.7
Calculer les primitives des fractions rationnelles F; a Fr de 'exercice 5.

Exercice corrigé 4.1
Décomposer en éléments simples sur R :

X
X2 -4
X3 -3X°+X -4

X -1
_2X3+ X2 -X+1
o X2-2X +1
2¢% — 3z +3

T3 —2224 -1

da* — 1023 + 822 — 4z + 1

1. F(X) =

2. G(X) =

x3(x —1)2
1. e La partie entiere est nulle
N . . X X
e Factorisation du dénominateur : F(X) = — =
X2 -4 (X —2)(X +2)
A B
e Forme générale de la DES : FI(X) = ——— + A; B=cstes e R
X -2 X +2
X 2 1
o A= F(X)(X =2)|x_y = - =_—— ==
X+2x_y 242
B=F(X)(X+2) - !
° — . . = = ——
X==2" X _2|y_ , —2-2 2

1 1
2(X — 2) N 2(X +2)

Donc | F(X) =

2. La partie entieére est non nulle. La division par puissances décroissantes du numérateur par le dénominateur donne :

5

G(X)=X>—-2X —1-—

X -1
C’est la directement la DES.
3. e La partie entiere est non nulle. La division par puissances décroissantes du numérateur par le dénominateur donne
X —4
H(X)=2X4+5+ —5¥———F.
(X X2 —-2X +1
‘g . . X —4
e Factorisation du dénominateur : H(X) =2X +5+ ﬁ
F énérale de la DES : H(X) = 2X +5 + A A A A tes € R
e Forme générale de la : = 54 — 4+ ——— ; = cstes X
“ X—1 (x—nz 17

o Ap= HX)(X —1)?|,_, = X’ +X*-X+1)|,_, =3
e Pour A; on peut prendre une valeur particuliere, par exemple X =0 :

2X3 + X2 - X +1
X2 _—2X +1

A 3
:<2X+5+7+7>‘ —=1=5—-A1+3= A, =7
=0

HO) = X1 (x—1)2

X=0

3
+

Donc H(X):2X+5+X71 m

4. e La partie entiere est nulle.
. . . 222 — 32+ 3
e Factorisation du dénominateur : K(z) = ——————
(@—2)(2 +1)
. L A ar +b
e Forme générale de la DES : K(z) = + — Aj; a; b=cstes €R
T —2 2 41
‘ 22% — 3z + 3
o A= K(.’lf)(:])—?)z"r:2 = % =1
ot + X=2
e Pour a et b on peut prendre deux valeurs particulieres, par exemple z =0 et oz = —1 :
3 1 b
KO) == =— +7 b— 1
-2 -2 1
8 1 —at+b T ‘
K(-1)= — = — + a=b+2=1
—6 -3 2

1 +x71
Tz —2 2 4+ 1

Donc | K(z) =
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5. e La partie entiere est nulle.

e Forme générale de la DES :

Ay Ay Az B, B
Ay ; As; Az By ; By = cstes € R
x

x2 3 z—1 (z—1)2

e Pour les A; :

. . B B : dz* —102® + 822 — 4z 41 4zt — 102> + 822 — 4z 4+ 1
L(m):n‘3:A1902+A4230+A3+( 1 2 )T.g: T r” + 8w r+1 4da x” + 8w x +

z—1 v (z —1)2 (xz —1)2 a 22 — 2z —1

La division de (4%4 - 10z® + 822 — 4z + 1) par (ac2 — 2z — 1) par puissances croissantes a ’ordre 3 donne comme
quotient (1 — 2 4 3z?2). On identifie donc :

A =3
A2 = -2
A3 =1
e By = L(z)(z — 1)2}3':1 = -1
e Pour B;j on prend une valeur particuliére, par exemple x = —1 :
L(-1) = T g gy B gy
T a —2 4 L
D L(x) 1 2 n 1 1
onc €Tr) = - — — e —
e ! r  x2 z—1 (z —1)2

Exercice corrigé 4.2 90t 1943 1922 30— 1
Soit la fonction f: x +— f(z) = 3
x3(x? —1)

Justifier sans calcul que la partie entiére de f(x) est nulle.

1
2. Déterminer la factorisation du dénominateur et en déduire le domaine de définition de f.
3. Déterminer la décomposition en éléments simples de f(z).

4. Question BONUS :

3
Calculer I :/ f(z) de.
2

1. Le numérateur est de degré 4 et le dénominateur est de degré 5. Le degré du dénominateur étant supérieur a celui du numérateur,
la partie entiere de f(z) est nulle.

2. (1?271:((1?71)((2+1):

.’L'B(.'L'Q —-1) = .’L‘B((L‘ —1(z+1)|

On en déduit | Dy =R\ {0; 1; —1} ‘

22 + 222 + 222 — 3z — 1
z3(x — 1)(z + 1)

e Forme générale de la décomposition en éléments simples :

3. On a f(z) =

y B )
f(z) = P + 711 + = A; B; Cy; Co; C3 = cstes
e Détermination de A : 24242-3_1
@)z -1, =A="T""""" ~— A=1
F@) @ = Dl —
e Détermination de B : 224243 -1
z)(z +1 =p=2_-T"7T°" - = B=2
F@)@+ 1)y S
e Détermination des C; :
Fo) x o 22* +22% + 227 — 3z — 1 ( A n ) 34 012 4 Coa + C
T z° = = T 1T > s
’ (z2 — 1) z—1 z+1 ! 2 ?

On doit doit donc faire la division par puissances croissantes a lordre 2 de 2z* + 22° + 222 — 32 — 1 par 22 — 1. Cette
division donne un quotient de 1 + 3z — z2.
On en déduit C; = —1; Co =3 ; Cs = 1.

Finalement :

f(L) - 1 - x+1 x

1 2 1
xr —
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