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Préface

Cette thèse est dédiée à la modélisation de la croissance cristalline dans des géométries
confinées. Nous considérons deux types de confinement, qui sont dus soit à la présence d’un autre
cristal, soit à la présence d’une paroi inerte.

Le premier type de confinement est rencontré à la fin de la croissance des matériaux bidimen-
sionnels (2D), lorsque les bords des domaines des matériaux 2D se rencontrent pour former des
joints de grains. Ces joints de grain contribuent de façon importante aux propriétés physiques des
matériaux 2D, par exemple leur conductivité thermique ou électrique. Notre but est de décrire
la rugosité du joint de grain ainsi formé. Nous avons développé une approche de Langevin pour
décrire la dynamique de la collision des bords des domaines 2D. Cette modélisation prédit trois
régimes. Dans le premier régime, caractérisé par une croissance suffisamment lente et une cinétique
d’incorporation des atomes au bord des domaines suffisamment rapide, la rugosité des bords croît
de façon monotone avec le temps avant et après la collision. Lorsque la vitesse de croissance est
plus grande, la rugosité se comporte de façon non-monotone. Elle augmente jusqu’à un maximum
avant la collision, puis diminue fortement pendant et juste après la collision, puis augmente
à nouveau après la collision pour atteindre une valeur d’équilibre. Ce régime non-monotone
est séparé en deux sous-régimes dans lesquels la rugosité initiale (avant le maximum) provient
respectivement des fluctuations statistiques ou des instabilité morphologiques de type Mullins et
Sekerka. Ces résultats sont en bon accord avec des simulations Monte Carlo Cinétiques (KMC).
Cependant les simulations KMC indiquent la présence d’un quatrième régime quand le taux de
déposition est si grand que le substrat est complètement recouvert avant que le matériaux 2D
ne puisse croître. Le comportement de la rugosité dans ce nouveau régime est analogue à celui
des régimes non-monotones. De plus, nous avons développé un deuxième modèle de Langevin
qui permet de décrire l’évolution de la rugosité du joint de grain après la collision en accord
quantitatif avec les simulations KMC.

Le deuxième type de confinement est rencontré lors de la croissance des cristaux dans les
pores et les interstices des roches géologiques et des matériaux de construction. La force exercée
par les cristaux sur les parois pendant la croissance est une source importante de dégradation de
ces matériaux. Afin de modéliser la croissance à la surface d’un cristal en contact avec une paroi
rugueuse, nous avons mis en place un modèle de champ de phase. Ce modèle décrit la dynamique
des marches atomiques sous l’influence d’une paroi rugueuse. Les premiers résultats montrent
qu’au voisinage d’une protubérance de la paroi, la surface du cristal peut présenter une solution
stationnaire avec une dépression formée d’une ou de plusieurs marches concentriques. Le nombre
de marches de cette dépression dépend de la force appliquée sur le cristal. Ce résultat apporte
des premiers éléments microscopiques pour la compréhension de la force de cristallisation.
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Preface

This thesis is dedicated to the modeling of crystal growth in confined geometries. We consider
two types of confinement, which are due either to the presence of another crystal or to the
presence of an inert wall.

The first type of confinement is encountered at the end of the growth of two-dimensional (2D)
materials, when the domain edges of 2D materials meet to form grain boundaries. These grain
boundaries contribute significantly to the physical properties of 2D materials, for example their
thermal or electrical conductivity. Our goal is to describe the roughness of the grain boundary thus
formed. We have developed a Langevin approach to describe the collision dynamics of the edges
of 2D domains. This model predicts three regimes. In the first regime, characterized by sufficiently
slow growth and sufficiently fast domain edge incorporation kinetics, the edge roughness grows
monotonically with time before and after the collision. When the growth rate is higher, the
roughness behaves in a non-monotonic way. It increases to a maximum before the collision, then
decreases sharply during and just after the collision, then increases again after the collision to
reach an equilibrium value. This non-monotonic regime is separated into two sub-regimes in which
the initial roughness (before the maximum) comes respectively from statistical fluctuations or
Mullins and Sekerka type morphological instabilities. These results are in good agreement with
Kinetic Monte Carlo (KMC) simulations. However, the KMC simulations indicate the presence
of a fourth regime when the deposition rate is so large that the substrate is completely covered
before the 2D material can grow. The behavior of the roughness in this new regime is analogous
to that of the non-monotonic regimes. In addition, we have developed a second Langevin model
that allows us to describe the evolution of the grain boundary roughness after the collision in
quantitative agreement with the KMC simulations.

The second type of confinement is encountered during the growth of crystals in the pores
and interstices of geological rocks and building materials. The force exerted by the crystals on
the walls during growth is an important source of degradation of these materials. In order to
model the growth at the surface of a crystal in contact with a rough wall, we set up a phase field
model. This model describes the dynamics of atomic steps under the influence of a rough wall.
The first results show that in the vicinity of a wall protrusion, the crystal surface can present
a stationary solution with a depression formed by one or more concentric steps. The number
of steps of this depression depends on the force applied on the crystal. This result brings first
microscopic elements for the understanding of the crystallization force.
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Lmin : longueur minimale des domaines pour que la rugosité puisse atteindre un minimum local
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dans la condition de temps courts bt � 1 ∼ [L].
teq : temps auquel le système atteint son été d’équilibre ∼ [T ].

Chapitre 5
φ(x, y, t) : paramètre d’ordre (ou champ de phase), adimensionné.
φinit(x, y) : champ de phase initial, adimensionné.
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a⊥ : hauteur d’une marche atomique, utilisée pour l’adimensionnement des grandeurs spatiales
normale au plan (x, y) (attention, la définition dans ce chapitre est différente par rapport à celle
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grandeurs spatiales dans le plan (x, y), définie par l’Eq. (D.13) pour la section 5.2 et par l’Eq.
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C : concentration normalisée, c’est la fraction de l’épaisseur de fluide qui serait occupée par le
solide si toute la concentration était incorporée dans le solide, adimensionné.
Ceq : concentration normalisée d’équilibre, adimensionné.
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α : coefficient du modèle de champ de phase ∼ [M ][L]2[T ]−2.
W̃ : épaisseur typique d’une marche atomique, adimensionné.
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Mλ : coefficient de diffusion de particules sans interaction avec substrat, section 5.2 ∼ [L]2[T ]−1.
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Mmicro/Ω : coefficient de diffusion de particules avec interaction, section D.1.2 ∼ [L]2[T ]−1.
Nstep : hauteur de la protubérance initiale (adimensionnée, en unités de a⊥).
σ : écart-type de la protubérance initiale (adimensionnée, en unités de lφ).
Nx (Ny) : nombre de points pour le cadre de simulation sur l’axe x (y), adimensionné.
Lx = Nx × dx = Ly = Ny × dx = L) : taille du carré de simulation sur l’axe (L̃ = L/lφ).
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U : potentiel d’interaction entre le cristal et le substrat (Ũ = U/β).
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ν : temps caractéristique de la dissipation visqueuse (ν̃ = νa2⊥(τφlφ)

−1).
Fcz : force de poussée sur le cristal (F̃cz = Fcza⊥(l2φβ)

−1).
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R : rayon de courbure de la pointe du défaut sur le substrat (R̃ = Ra⊥/l2φ).
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ζ0 : distance entre le cristal et le défaut au niveau de la pointe du défaut (ζ̃0 = ζ0/a⊥).
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Chapitre 1

Introduction

1.1 Croissance de cristaux

L’ensemble de ce travail de thèse s’insère dans le champ d’étude de la croissance des cristaux.

1.1.1 Les cristaux au quotidien

Dans le langage courant, un cristal est un solide transparent, joli et fragile. On pense
naturellement à une boule de cristal, à différents types de verrerie, à des pierres précieuses. Mais
dans le langage scientifique, un cristal est un solide dont la structure atomique est ordonnée et
périodique dans les trois directions de l’espace. Depuis 1912, année où le physicien allemand Max
von Laue découvre que les rayons X sont diffractés par les cristaux, l’analyse et la compréhension
de leur structure microscopique s’est considérablement accélérée. Dans le cadre de cette thèse,
nous nous focaliserons sur leur croissance.

Figure 1.1: (a) Pierres précieuses. (b) Cristal de glace. ©Myriams-Fotos (c) Glaçons. (d) Tube
de cuivre. Tous ces objets sont des exemples de cristaux.

1.1.2 Modéliser la surface des cristaux

La croissance cristalline est au cœur de nombreuses disciplines parmi lesquelles la métallurgie
[1], la microélectronique [2], l’agroalimentaire [3], le pharmaceutique [4], la géophysique [5], le génie
civil [6], [7], et bien d’autres encore. Son étude permet de mieux comprendre les mécanismes qui
engendrent les nanostructures, les défauts structurels et la morphologie des cristaux. Aujourd’hui,
la croissance et la nucléation des cristaux sont envisagées par l’utilisation de modèles théoriques
et expérimentaux.

1.1.3 Modèles de marches atomiques

Dans ce travail, nous voulons décrire la croissance de cristaux avec des modèles de marches
atomiques. En effet, la croissance du cristal s’effectue, dans de nombreux cas, couche par couche,
formant des marches atomiques comme indiqué sur la Figure 1.2.
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Figure 1.2: Modèle discontinu présentant la notion de marche atomique à la surface d’un cristal.

Nous utilisons deux types de description des surfaces et de leur marches. Le premier correspond
à un modèle de croissance sur réseau. Un schéma est représenté sur la Figure 1.3(a). Chaque
particule cubique, de paramètre a, se déplace sur un réseau cubique et l’assemblage de ces
particules forme le cristal. Ce cristal théorique constitué d’un empilement de blocs microscopiques
est communément appelé cristal de Kossel dans la littérature. Le second est un modèle de marches
avec une hauteur atomique et un profil continu. La justification de cette modélisation par un
ensemble de marches est fondée sur la théorie de la transition rugueuse. Cette théorie indique
qu’en dessous d’une certaine température (habituellement proche de la température de fusion),
les marches ont une énergie libre finie et sont donc les briques de base pour une description de la
morphologie des surfaces à grande échelle [8], [9].

Figure 1.3: (a) Schéma représentant un cristal en croissance sur un réseau carré. (b) Schéma
d’un cristal en croissance avec des marches continues mais les terrasses sont positionnées sur un
axe discret suivant leur direction normale.

1.1.3.1 Modèle sur réseau - KMC

Nous utilisons un modèle Monte-Carlo cinétique (KMC) sur réseau. C’est une méthode
numérique de Monte-Carlo visant à simuler l’évolution temporelle d’un processus qui peut être
décrit par une liste de processus élémentaires, dont les taux de réalisation sont connus. Ici, ces
processus élémentaires seront les mouvements des atomes à la surface du cristal. Une première
approche de la méthode KMC a été développée par Young et Elcock en 1966 [10]. De manière
apparemment indépendante, en 1975, Bortz, Kalos and Lebowitz [11] ont développé un algorithme
KMC, baptisé n-fold, pour simuler le modèle d’Ising. La particularité de cet algorithme est de
toujours effectuer un mouvement et un seul à chaque itération, ce qui est très efficace à basse
température. En 1976, Gillespie a développé un algorithme éponyme pour décrire les réactions
chimiques [12]. L’algorithme de Gillespie utilise également les mêmes principes que celui de KMC.
Une revue des différentes utilisations de l’algorithme KMC a été réalisée par Chatterjee et Vlachos
[13].

1.1.3.2 Modèle de marches continues - Langevin

Pour décrire la croissance couche par couche d’un cristal, il est fréquent d’utiliser un modèle
de marches atomiques [8], [14]. D’autre part, au début du XXè siècle, une classe de modèles a été
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développée pour décrire de manière simple la dynamique d’un système, en tenant compte des
fluctuations thermiques : ce sont les modèles de Langevin [15]. Une dynamique de Langevin est
régie par une équation différentielle stochastique (EDS), c’est-à-dire une équation différentielle
à laquelle on ajoute un terme qui caractérise le bruit. Les modèles de Langevin permettent de
décrire des systèmes d’une large classe de domaines : physiques [8], [16], [17] (croissance cristalline,
matériaux magnétiques, systèmes quantiques), biologiques (déplacement et croissance des colonies
de bactéries ou de celllules [18]), chimiques (dynamique moléculaire, avancement réactionnel),
sociaux (déplacement des foules [19], conflits socio-ethniques [20]), écologiques (déplacements
d’une espèce animale [21], avancée d’un feu de forêt [22]), économiques (fluctuations et krach
d’un cours boursier [23]). Ces modèles de Langevin sont notamment très courants en physique des
interfaces, et permettent de décrire des systèmes stochastiques étendus, y compris la croissance
des marches atomiques [2], [9], [24].

Dans cette thèse nous avons développé des modèles de Langevin pour les marches, et fait le
lien entre ces modèles et les modèles KMC sur réseau.

1.1.4 Asymétrie avant-arrière des marches

L’asymétrie du mouvement d’un atome près d’un bord de facette ou d’une marche a été
observée expérimentalement en 1966 par Ehrlich [25] puis décrite théoriquement au bord des
marches par Schwoebel durant la même année [26]. Cet effet est donc connu sous le nom d’effet
Ehrlich-Schwoebel. En se référant au schéma de la Figure 1.4(a), une particule sur la terrasse
supérieure rencontre une barrière énergétique à franchir pour pouvoir descendre, car elle doit passer
par une position où elle a un nombre plus petit de liens avec ses plus proches voisins (coordinance).
Une particule diffusant sur la terrasse inférieure verra directement un puits énergétique au contact
de la marche atomique, car elle ne doit pas passer par une position où elle a moins de voisins.
Pendant la croissance, lorsque la barrière Ehrlich-Schwoebel, qui limite l’attachement des atomes
venant de la terrasse supérieure, est suffisamment grande, il est attendu que la marche atomique
avance de la gauche vers la droite par l’ajout de particules depuis la terrasse inférieure uniquement.

Figure 1.4: (a) Surface d’un cristal, et paysage énergétique ressenti par une particule mobile
en fonction de sa position sur le cristal [26]. (b) Analogie entre le déplacement d’une marche
atomique et la croissance d’un matériau 2D. Le matériau 2D est représenté en noir, en croissance
sur un substrat représenté en rouge.

Le concept de marche atomique se transfère naturellement à la description du bord d’un
matériau 2D (voir Figure 1.4(b)). Cependant, pour les matériaux 2D, les mécanismes physiques
sous-jacents peuvent être très différents.

À notre connaissance, un effet Schwoebel au bord des matériaux 2D n’a pas été mis en
évidence. Dans le cas des matériaux 2D, l’origine de l’asymétrie entre l’avant et l’arrière du bord
est différente. Elle est due au fait que les deux terrasses, au dessus et en dessous de la marche
sont de nature différentes. En effet, sur la terrasse supérieure les atomes mobiles sont en contact
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avec le matériau 2D alors que sur la terrasse inférieure les atomes mobiles sont en contact avec le
substrat.

Par exemple, pour la croissance du graphène par CVD sur un substrat de Cu, le système
est en contact avec une vapeur contenant une molécule précurseur, habituellement du méthane
CH4. Le scénario habituel que l’on retrouve dans la littérature est que les molécules précurseurs
se décomposent et relâchent des particules pour la croissance (atomes de carbone C, ou autres
molécules) lorsqu’elles sont adsorbées directement sur le substrat de Cu. En revanche, elles ne se
décomposent pas lorsqu’elles sont adsorbées sur la couche de graphène. Dans notre modèle, nous
faisons l’hypothèse que les unités de croissance ne sont relâchées que sur le substrat, avec un taux
uniforme et indépendant du temps. Une modélisation assez similaire a déjà pu être comparée
favorablement avec des expériences dans la Ref. [27]. Cependant, d’autres études tiennent compte
de la déposition et de la diffusion à la fois sur le substrat et sur le matériau 2D [28]. Une description
plus détaillée devrait inclure différents champs de concentration pour tenir compte des différentes
molécules présentes sur le substrat [29], [30], et de la potentielle diffusion entre le graphène et
le substrat [31], [32]. En général les ingrédients pertinents du modèle dépendent des conditions
expérimentales [27], [32].

1.1.5 Instabilité de Mullins-Sekerka

La croissance cristalline est le siège d’une large gamme de processus cinétiques (déposition de
particules, diffusion, attachement/détachement). Si elle est limitée par la diffusion (c’est-à-dire si
la diffusion est le processus le plus lent), la concentration en particules n’est alors pas homogène
sur toute la surface. En effet, comme on peut le voir sur la Figure 1.5(a), une monocouche (rouge)
croît sur un substrat (vert) par attachement de particules mobiles qui diffusent (blanc). La
concentration en particules mobiles au niveau des pics est supérieure à celle au niveau des creux.
Si de plus, un mécanisme crée une asymétrie d’attachement entre l’avant et l’arrière de l’interface
(comme l’effet Schwoebel par exemple), la fréquence des évènements d’attachements est supérieure
au niveau des pics, et ainsi la croissance est plus rapide au niveau des pics également, ce qui permet
à l’instabilité de se développer. Ce phénomène qui apparaît en régime limité par la diffusion pour
un système à deux dimensions est couramment appelée instabilité de Bales-Zangwill depuis 1990
[33]. C’est en fait une variante de l’instabilité de Mullins-Sekerka, qui a été originellement décrite
dans des systèmes à trois dimensions en 1963 [34].

Figure 1.5: (a) Image représentant un instantané d’une simulation KMC. La monocouche
cristalline croissante (le matériau 2D) est représentée en rouge sur un substrat vert. Les particules
mobiles sur la surface libre sont blanches. La densité de particules est plus faible dans les creux
que proche des pics. La croissance qui résulte de l’attachement des particules mobiles au bord de
la monocouche est plus rapide au niveau des pics, ce qui déstabilise l’interface. Ce phénomène est
dû à une limitation de la vitesse de diffusion des particules. Il est connu sous le nom d’instabilité
de Mullins-Sekerka. (b) Image par STM d’un flocon de graphène présentant une morphologie
branchée, caractéristique d’une instabilité de Mullins-Sekerka durant la croissance. La barre
d’échelle représente 10 nm [35].
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1.2 Formation des joints de grains lors de la croissance des maté-
riaux 2D

1.2.1 Le graphène comme figure de proue

Les matériaux bidimensionnels (2D) sont nés suite à l’émergence, en 2004, du graphène qui
est doté de propriétés étonnantes [36]. Certaines comparaisons entre : les mesures lui donnent
une force de rupture d’approximativement 40 N/m (100 à 300 fois supérieure à l’acier), une
conductivité thermique à température ambiante d’environ 5000 W/m/K (plus de 10 fois supérieure
au cuivre et à l’argent) et un module de Young proche de 1.0 TPa (proche de celui du diamant,
quatre à cinq fois supérieur à l’acier). Il peut aussi être étiré élastiquement de 20%, ce qui est
supérieur aux valeurs de tout autre cristal [37]. Il convient toutefois de garder en tête que les
grandeurs ci-dessus sont définies pour des matériaux 3D. Ces tentatives de généralisation aux
matériaux 2D sont critiquables, et ont pour but de répondre à une volonté de comparer ensemble
des objets de natures différentes que sont les matériaux 2D et 3D.

Suite à cette découverte, de nombreux autres matériaux 2D ont vu le jour, avec des applications
plus spécifiques (dichalcogénures de métaux de transition, nitrure de bore hexagonal, borophène...).

1.2.2 Croissance des matériaux 2D et joints de grains

Par leur nombre grandissant d’applications, ces matériaux 2D ont motivé de nombreuses
études de leur cinétique de croissance dans les deux dernières décennies [38]-[42]. À l’échelle
industrielle, la production d’un matériau 2D de bonne qualité reste encore difficile à réaliser
car elle est coûteuse et lente. Plusieurs procédés sont utilisés. Historiquement, l’exfoliation du
graphène à partir du graphite est la première méthode qui a été mise au point, en 2004 par Andre
Geim et Konstantin Novoselov, les deux lauréats du prix Nobel de Physique en 2010. Le graphène
qui en résulte est un matériau de bonne qualité mais de petite taille. La déposition chimique en
phase vapeur (ou CVD pour Chemical Vapor Deposition) reste le procédé le plus efficace pour
la production à grande échelle. Cependant, le choix du substrat (Or, argent, cuivre... solide ou
liquide), le choix des précurseurs [43] et les valeurs des paramètres (flux, température) restent
encore à optimiser. La vitesse de croissance vise aussi à être améliorée, c’est également un sujet

Figure 1.6: Croissance du graphène sur substrat de cuivre par CVD. (a) Germes jouant le rôle
de sites de nucléation, chacun de taille 500 nm. (b) Croissance après 5 minutes. (c) Croissance
après 15 minutes. Sur les trois figures, la barre d’échelle mesure 10 μm [44].

d’étude, notamment pour le graphène [40]. Aujourd’hui, on peut produire des feuilles de graphène
de taille typique proche du mm en quelques secondes. Autre problème rencontré, des défauts se
créent dans le cristal, et notamment les joints de grains (GB), lors de la croissance par CVD. En
effet, lors du processus de croissance, plusieurs cristaux 2D grandissent côte à côte jusqu’à se
toucher. Si les orientations initiales des cristaux de graphène sont différentes, alors la croissance
aboutira à la formation des GBs, qui peuvent modifier les propriétés mécaniques et électriques du
matériau. Il est donc important de comprendre la structure et les propriétés des GBs dans le but
d’optimiser ses performances.
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Figure 1.7: (a) Image de graphène par microscopie électronique. Les grains sont représentés
par différentes couleurs lorsqu’ils émanent de différents germes. Ils sont séparés par des joints de
grains. (b) Image par STM d’un joint de grains pour deux cristaux ayant une orientation relative
de réseau de 27°. La barre d’échelle mesure 0.5 nm. Ces deux images proviennent de [39].

1.2.3 Influence des joints de grains sur les propriétés physiques

Il est assez généralement admis que les GBs ont une influence négative sur les performances des
matériaux [45]. Leur impact direct dépend de nombreux paramètres (orientations des différents
cristaux de graphène avant coalescence, densité des joints de grains...). Intuitivement, on pourrait
penser qu’une densité de joints de grains élevée va largement abaisser la conductivité électrique
ou thermique du matériau.

La croissance de grands cristaux est donc régulièrement recherchée pour réduire les effets des
joints de grains sur les propriétés électroniques et mécaniques de ces matériaux, mais les mesures
expérimentales ne montrent pas un tel consensus. Pour certains matériaux, une densité de joints
de grains élevée peut être un problème mineur. C’est notamment le cas pour l’intégration de films
ultrafins de MoS2 avec un substrat de Si dans certains dispositifs qui demandent une température
de déposition faible [46]. De plus, une forte densité de joints de grains peut même être bénéfique
pour certaines applications de matériaux 2D, comme pour le WS2 dans les capteurs de Hg2+ (les
défauts structurels sur les GBs agissent alors comme des sites favorables à l’adsorption d’ions) [47].
Les joints de grains du WS2 peuvent également être utiles comme canaux de haute conductivité
[48]. Au-delà de leur densité, la rugosité des GB peut aussi affecter les propriétés des matériaux
2D de manière non triviale.

Dans les cristaux de ReS2 les fractures sont plus fréquentes au niveau des GBs parallèles au
chaînes Re [49]. Ainsi des GBs rugueux et désordonnés pourraient améliorer leur résistance à la
fracture. De plus, des simulations laissent penser que les GBs de forme sinueuse dans le graphène
seraient énergétiquement favorables par rapport aux GBs plats [50]. Dans le cas du graphène,
certaines études expérimentales ont rapporté que la taille du cristal à l’échelle micrométrique n’a
pas d’impact sur la conductivité électrique [51] et que la résistance mécanique n’est pas diminuée
par la présence des GBs [52]. L’effet des GBs ne dépend pas uniquement de leur densité, mais
aussi de leur arrangement microscopique [53]. D’autres simulations montrent qu’en jouant sur
l’angle du GB, c’est-à-dire la différence d’orientation de deux cristaux voisins (misorientation
angle), nous pourrions produire des feuilles de graphène aux propriétés très proches de celle du
graphène parfait [54].

1.2.4 État de l’art sur la formation des joints de grains

La morphologie des GBs est fortement liée aux conditions de croissance, et plusieurs articles
ont déjà proposé une discussion de ce lien [38], [40]. Le régime limité par la cinétique d’attachement
des particules est observé pour une croissance suffisamment lente et donne lieu à des formes de
domaines polygonales et compactes. Cela aboutit généralement à la formation de GBs lisses [38].

Les modèles de croissance permettent de prédire la vitesse d’avancée du bord des domaines
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Figure 1.8: Représentation d’une collision de deux lignes rugueuses unidimensionnelles. Ce
phénomène apparaît dans de nombreux systèmes, dont certains sont référencés sur la Figure 1.9.

2D en fonction de leur orientation et de la sursaturation. À partir de la donnée de la vitesse
du front en fonction de l’orientation, on peut obtenir la forme asymptotique des domaines 2D
par la construction de Franck (aussi appelée construction de Wulff dynamique [2]. Par ailleurs,
la structure microscopique du GB peut être déterminée par la différence d’orientation entre
deux cristaux limitrophes dans ces conditions [55]. Des modèles similaires et d’autres approches
multi-échelles sont utilisées pour décrire la croissance de dichalcogénures de métaux 2D [56]-[58].
Il est clair que tous ces modèles négligent complètement les fluctuations statistiques qui sont
inévitables pendant la croissance et qui sont particulièrement importantes pour les bords de
marche dû à leur caractère unidimensionnel. C’est l’une des questions centrales que nous avons
abordé dans cette thèse.

De plus, une croissance rapide est importante pour les applications. Dans ce cas, on peut
se trouver dans le régime limité par la diffusion, pour lequel la morphologie des GBs n’est plus
rectiligne, mais peut atteindre des formes dendritiques résultant de l’instabilité de Mullins-Sekerka.
Les expériences, les modèles de champ de phase, et les simulations KMC montrent la formation
de cristaux présentant des morphologies dendritiques ou fractales en accord avec les observations
expérimentales [27], [28], [40], [57], [59]-[61]. Cependant, il n’y a à notre connaissance pas d’étude
qui analyse précisément l’influence des instabilités sur la morphologie des GBs. C’est un autre
objectif important de notre travail.

L’observation de liens entre conditions de croissance et morphologie des GBs dans une
large variété de matériaux a poussé au développement de modèles génériques, à même de
reproduire l’ensemble des phénoménologies observées expérimentalement, avec un nombre réduit
de paramètres. Ce type d’approche a déjà été fructueux dans la description de la morphologie
de films semiconducteurs et métalliques par homo-épitaxie, en incluant notamment la diffusion
d’adatomes ainsi que leur attachement/détachement des îlots et des terrasses [2], [9], [62]-[64].
C’est dans cette famille d’approche que s’inscrit notre travail.

1.2.5 Les collisions d’interfaces

En prenant un point de vue plus général, le scénario de nucléation, croissance puis de
coalescence de domaines est un paradigme central de la physique hors-équilibre. De nombreux
travaux ont été réalisés à propos des premières étapes de nucléation et de croissance [65][66], mais
le tissu de connaissances sur la coalescence des domaines est particulièrement fin. L’essentiel des
travaux que nous avons retrouvé sur le sujet sont ceux d’E.V. Albano en 1997 [67] et 2001 [68] qui
a déterminé les exposants de rugosité de l’interface générée lors de la collision de deux interfaces
suivant un processus de croissance d’Eden dans le régime stationnaire. Plus tard, F. Reis et O.
Pierre-Louis en 2018 [69] ont montré que la morphologie des interfaces et la durée de la collision
sont indépendants du détail de leurs interactions lorsque celles-ci sont à courte portée. Le cas de
l’évolution de la rugosité de l’interface entre deux domaines limitrophes (c’est-à-dire côte à côte)
en compétition pour la croissance a aussi été étudié par Derrida et Dickman en 1991 [70].

La collision de deux interfaces qui s’approchent l’une de l’autre en avançant dans des directions
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opposées [67]-[69] est un scénario suffisamment simple pour permettre une analyse théorique
détaillée. C’est ce processus élémentaire, représenté sur la Figure 1.8, que nous avons modélisé. Il
s’applique certes à la croissance des matériaux bidimensionnels, mais est aussi pertinent pour
d’autres phénomènes physiques. On peut le retrouver dans des systèmes aussi différents que la
coalescence de domaines magnétiques [71], l’avancée en directions opposées de deux fronts de
réaction [72], la croissance de 2 colonies de cellules cancéreuses en compétition pour des nutriments
[18]. Nous pouvons également imaginer que ce processus intervient lors de la rencontre de deux
fronts de propagation d’un incendie [73], de deux foules de personnes (affrontement guerrier [74],
rencontre manifestants/CRS, mêlée au rugby [75]...).

Figure 1.9: (a) Colonies de bactéries grandissant en direction l’une de l’autre [18]. (b) Collision
d’interfaces avançant dans des directions opposées [69]. (c) Conflit guerrier entre deux armées.
Age of Empires II. (d) Préparation d’une mêlée entre deux blocs de joueurs de rugby [75].

Cependant, parmi tous ces phénomènes, les processus de progression des interfaces ne sont
pas les mêmes. Les interfaces peuvent accélérer avant la collision comme lors d’une mêlée entre
deux blocs de joueurs de rugby [75], ou ralentir lors de la croissance de deux colonies de bactéries
en compétition pour un nutriment dont la concentration s’amoindrit [18], voire garder une vitesse
sensiblement constante dans le cas d’une croissance par CVD de monocouches de cristaux en
régime de forte déposition [76], [77]. Le cas de la croissance à vitesse constante a déjà été étudié
dans le cas d’une étude précédemment citée [69].

Notre but est de prendre en compte l’effet de la diffusion lors de la croissance, qui couple les
deux interfaces avant la collision, donnant lieu à de nouveaux comportements qui n’ont pas été
décrits dans la littérature.

1.2.6 Résumé des résultats obtenus

Notre objectif est de décrire la rugosité du GB dans le cadre d’un modèle qui inclut la
déposition, la diffusion, l’attachement-détachement des atomes aux bords des domaines 2D, les
effets de tension de ligne, et les fluctuations statistiques. Nous avons tout d’abord développé
une approche de Langevin pour décrire la dynamique de la collision frontale de deux bords de
domaines 2D. Cette approche permet de décrire la croissance avant collision, la collision, et la
relaxation après collision dans un cadre d’un modèle unique.

Le modèle prédit trois régimes. Dans le premier régime, caractérisé par une croissance
suffisamment lente et une cinétique d’incorporation des atomes au bord des domaines suffisamment
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rapide, la rugosité des bords croît de façon monotone avec le temps avant et après la collision.
Aux temps longs la rugosité sature à une valeur d’équilibre. Lorsque la vitesse de croissance est
plus grande, la rugosité se comporte de façon non-monotone dans le temps. Elle augmente jusqu’à
un maximum avant la collision, puis diminue fortement pendant et juste après la collision, puis
augmente à nouveau après la collision pour atteindre une valeur d’équilibre. Ce comportement
non-monotone est séparé en deux régimes dans lesquels la rugosité initiale (avant le maximum)
provient respectivement des fluctuations statistiques ou des instabilités morphologiques de type
Mullins et Sekerka.

Ces résultats sont en bon accord avec des simulations Monte Carlo Cinétiques (KMC).
Cependant les simulations KMC indiquent la présence d’un quatrième régime quand le taux de
déposition est si grand que le substrat est complètement recouvert de particules mobiles avant
que le matériaux 2D ne puisse croître. Le comportement de la rugosité dans ce nouveau régime
est analogue à celui des régimes non-monotones, mais l’exposant de croissance de la rugosité
avant le maximum est différent. Ce dernier régime est celui qui permet d’atteindre la rugosité la
plus faible après la collision et pourrait donc être intéressant pour former des GBs très lisses. De
plus, nous avons aussi développé un deuxième modèle de Langevin qui permet de mieux décrire
l’évolution de la rugosité du GB après la collision. Les résultats de ce modèle sont en accord
quantitatif avec les simulations KMC.

Les travaux présentés ci-dessus ont donc consisté en l’identification des conséquences du
confinement latéral des matériaux bidimensionnels lors de leur croissance. La section suivante est
consacrée à l’étude d’un autre type de confinement où un cristal est également contraint dans sa
croissance, mais suivant la dimension verticale.

1.3 Croissance d’un cristal confiné

1.3.1 Exemples

La géologie est un terrain de jeu privilégié pour la croissance confinée. En effet, les milieux
géologiques sont le siège de fractures, de pores, d’interstices dans lesquels des minéraux se logent.
Les minéraux baignent parfois dans des milieux aqueux, dans lesquels les ions se déplacent et
s’accumulent autour des cristaux, s’accrochant aux facettes déjà existantes et participant ainsi à
leur croissance. Ces minéraux étant contraints spatialement par des parois environnantes, nous
parlons alors de croissance cristalline confinée.

Cette croissance confinée se retrouve aussi en biominéralisation (croissance de minéraux par
des organismes biologiques). On peut citer par exemple le cas des coccolithes qui croissent dans
des vésicules lipidiques [78]. Il a été montré expérimentalement que le confinement peut affecter
la morphologie et la phase des nanocristaux [79], [80]. Au niveau technologique, le mouvement
des parois induit par croissance d’un cristal confiné pourrait être utilisé dans des applications
comme des nanomoteurs [81].

Dans le milieu du génie civil, des matériaux de construction poreux à base de ciment comme le
béton peuvent être soumis à ce phénomène. Les effets de la cristallisation de sels [7], [82] dans les
pores de la roche sont les principaux responsables de la détérioration des bâtiments et monuments
historiques, comme illustré sur les Figures 1.10(a) et (b).

Il a également été proposé que la croissance confinée pourrait être à l’origine de fractures dans
la croûte terrestre [83], et du soulèvement de certaines roches [84].

1.3.2 Force de cristallisation

La force de cristallisation est la force engendrée par un cristal en croissance dans un milieu
confiné sur les parois environnantes. Ce mécanisme a été signalé premièrement en 1853 par le
botaniste J. Lavalle [85], puis discuté au début du XXme siècle par Becker et Day [86], [87] et par
Taber [88]. Une première tentative de quantification de cet effet a été réalisée en 1939 pour la
première fois par Correns et Steinborn [89].



1.3. CROISSANCE D’UN CRISTAL CONFINÉ 11

Figure 1.10: (a) Dégradation d’une sculpture en pierre historique (Lecce, Italy). (b) Images SEM
de cristaux NaCl précipités dans les pores de pierre de grès (roches sédimentaires composées de
grains de quartz), après évaporation de solution saline. Les microfractures pourraient être dues à
la cristallisation du sel dans les pores. Images tirées de [7].

Des études récentes ont montré que la cristallisation des sels est responsable de l’érosion et
de la dégradation des milieux naturels et anthropiques (bâtiments de construction) [82], [90],
[91]. Des modèles théoriques ont notamment permis de décrire l’ouverture d’une fissure par la
croissance d’un cristal confiné [92].

Cependant, mesurer cette force reste aujourd’hui encore un vrai défi [7], [89], [93]. Correns a
formulé en 1949 [94] la pression de cristallisation comme :

Pc =
RT

Vs
ln

C

Cs

où Pc est la pression de cristallisation, R est la constante de gaz parfait T la température absolue,
Vs le volume molaire de solide cristallin, C la concentration du soluté dans la solution, et Cs la
concentration de saturation. Cependant, plusieurs remarques ont été faites [95], suggérant que
cette équation n’était valable que dans un cas idéalisé. Dans cette thèse, nous voulons étudier
l’impact de la dynamique hors-équilibre sur la force de cristallisation, ainsi que l’influence de la
rugosité microscopique du substrat.

D’un point de vue expérimental, les dispositifs utilisés sont analogues à celui de l’expérience
de Correns et Becker, caractérisés par un cristal confiné entre deux plaques [7], [93] ou dans un
dispositif microfluidique [96], comme indiqué sur la Figure 1.11. Une force de cristallisation de
l’ordre de 102 MPa a pu être mesurée dans une expérience de 2016 [7], ce qui est bien au-delà de
la résistance en traction de roches sédimentaires qui est de l’ordre de 1− 10 MPa [97].

La force de cristallisation a un impact fort sur le vieillissement des constructions, mais aussi sur
l’évolution des matériaux géologiques. Cependant, les connaissances théoriques et expérimentales
sur la croissance confinée et la force de cristallisation sont encore trop minces. Notamment, la
plupart des approches connues se basent sur des concepts macroscopiques et il serait utile de
mieux comprendre les mécanismes en jeu lors de ce phénomène à l’échelle microscopique.

1.3.3 Modélisation et résultats

Dans cette thèse, la croissance d’un cristal confiné est modélisée à l’aide d’un modèle de champ
de phase. Ce travail poursuit les travaux de thèse de Luca Gagliardi [98], et rajoute plusieurs
nouveaux ingrédients. En effet, notre modèle inclut la présence de marches atomiques et une
rugosité microscopique sur le substrat en interaction avec le cristal.

Les premiers résultats ont permis d’identifier les conditions dans lesquelles les marches
atomiques peuvent être sujettes à des instabilités de type Mullins-Sekerka. Ils montrent de plus
qu’au voisinage d’une protubérance de la paroi, la surface du cristal peut présenter une solution
stationnaire avec une dépression formée d’une ou de plusieurs marches concentriques. Le nombre
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Figure 1.11: Dispositif expérimental utilisé par Becker et Day [86]. Un cristal en croissance et
confiné entre deux plaques. Leur idée est de mesurer la force de poussée du cristal par l’ajout
d’une masse sur une des plaques.

de marches de cette dépression dépend de la force appliquée sur le cristal. Ce résultat apporte
des éléments microscopiques pour la compréhension de la force de cristallisation.

1.4 Contributions apportées par ce travail

Nous avons abordé le thème de la croissance cristalline sous deux aspects principaux. Le
premier est lié à la croissance de matériaux 2D, très prometteurs pour de nombreuses applications
industrielles avec le graphène comme figure de proue. Le second est lié à la croissance confinée de
cristaux, et des contraintes qu’ils génèrent sur les murs environnants. En résumé, ma contribution
est la suivante.

Dans le cadre du travail sur les matériaux 2D, j’ai étudié la collision de deux interfaces
en croissance en présence d’interactions diffusives. J’ai travaillé sur les modèles analytiques de
Langevin, et ai contribué à l’établissement de deux modèles : (i) un modèle pour la croissance
des deux cristaux face à face et (ii) un modèle pour la relaxation du joint de grains après sa
formation.

J’ai ensuite développé une solution numérique spectrale qui a permis de déterminer l’évolution
temporelle de la rugosité en fonction des différents paramètres pour le modèle de croissance. J’ai
analysé les résultats de ce modèle à l’aide notamment de limites asymptotiques. J’ai pu montrer
que le modèle de Langevin de croissance permet de trouver un comportement non-monotone de
la rugosité en fonction du temps. Je me suis particulièrement intéressé aux régimes de scaling
caractérisés par des exposants (Edwards-Wilkinson et Random Deposition), et au temps auquel
on peut atteindre un maximum de rugosité. Finalement, j’ai construit un diagramme de phase de
croissance résumant les différents régimes d’évolution de la rugosité. En comparaison avec les
résultats des simulations KMC faites par Fabio Reis, nous avons trouvé un accord semi-quantitatif
pour les comportements d’échelle, et le diagramme de phase.

Par ailleurs, le modèle de Langevin de relaxation du joint de grains a permis de prédire un
minimum de rugosité observé dans les simulations KMC et de décrire de façon quantitative les
régimes d’échelle ainsi que la rugosité d’équilibre du joint de grain.

Pour la partie de croissance d’un cristal confiné, j’ai développé un code qui intègre les équations
du modèle sur la base d’un code spectral existant.

J’ai inclus trois avancées majeures dans le code : (i) une nouvelle approche qui décrit les
conditions aux limites au bord de la zone de contact à l’aide d’une interface diffuse ; (ii) les
effets de confinement par un substrat non-plat et l’évolution de marches multiples (le stagiaire
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L3 Matteo Peyla a également contribué au développement de ce code) ; (iii) les conditions aux
limites qui permettent de modéliser un bord de facette avec un paquet de marches atomiques
dans le cadre de ce modèle.

À l’aide de ce code, j’ai étudié numériquement les résultats du modèle. Cette étude a d’abord
permis de mettre en évidence les instabilités de méandre des marches et les conditions dans
lesquelles ces instabilités apparaissent. J’ai aussi étudié le comportement des facettes en présence
d’un défaut de rugosité du substrat confinant. Ceci a permis de trouver et de caractériser des
états stationnaires avec une ou plusieurs marches atomiques autour d’un défaut unique.
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Chapitre 2

Modèle de Langevin de collision
d’interfaces

Dans ce chapitre, le phénomène de collision d’interfaces est modélisé puis analysé à l’aide
d’un modèle de Langevin linéaire et continu.

2.1 Modèle

2.1.1 Plan du chapitre

Nous décrivons, à l’aide d’un modèle de Langevin, les fluctuations du bord de deux domaines
avançant face à face lors du processus de collision d’interfaces. Dans un premier temps, nous
utilisons un modèle déterministe tenant compte de la déposition de particules, de leur diffusion
et de leur attachement-détachement au niveau des bord de domaines. À l’aide de ce modèle,
nous décrivons d’abord la dynamique de deux fronts plans approchants l’un de l’autre. Un
ralentissement exponentiel de l’avancée des fronts est observé, connu sous le nom d’effet Zénon [99].
Nous dérivons ensuite les équations qui gouvernent l’évolution des perturbations de ces fronts
plans. Cette analyse révèle que les bords de domaines peuvent être stables ou instables selon les
valeurs des paramètres choisies. Des forces de Langevin sont ensuite ajoutées au modèle pour
décrire les fluctuations statistiques à l’équilibre et hors-équilibre. Les fluctuations statistiques
et les instabilités morphologiques sont les deux sources de rugosité. L’évolution des quantités
observables - la position moyenne des interfaces et leur rugosité - est enfin analysée. Différents
régimes de croissance ont pu être établis et recensés dans un diagramme de phase.

2.1.2 Modèle déterministe

Certains ingrédients physiques du modèle sont représentés sur la Fig. 2.1. Deux domaines,
ou plus précisément, deux monocouches atomiques croissent l’une en direction de l’autre sur un
substrat. En moyenne, leur front de propagation sont parallèles. Leur position dans la direction
	y est notée h±(x, t). Nous considérons que la déposition de particules ne s’effectue que sur le
substrat entre les deux fronts et est donnée par un flux surfacique F constant. C’est-à-dire que
nous considérons que les particules mobiles qui forment les unités de croissance du matériau
2D apparaissent avec un taux de production spatialement uniforme sur le substrat entre les
bords, et pas au-dessus du matériau 2D. Le flux F mesure donc le nombre de particules déposées
par unité de surface entre les deux bords. L’avancée des marches ne s’effectue donc que par
l’attachement de particules se déplaçant sur la terrasse inférieure. Cette hypothèse est analogue
aux situations de croissance cristalline avec effet Ehrlich-Schwoebel, pour lesquelles les atomes
s’attachent préférentiellement depuis le bas des marches atomiques. Cependant, dans ce cas, les
mécanismes physiques sous-jacents peuvent être très différents comme discuté dans la section
1.1.4.

La concentration de particules c(x, y, t) obéit à la loi de diffusion :

∂tc(x, y, t) = DΔc(x, y, t) + F, (2.1)

où F est le taux de déposition (nombre de particules par unité d’espace et de temps) et D
le coefficient de diffusion. En considérant que la diffusion est rapide, on retombe sur l’usuelle
approximation quasistatique [9], pour laquelle la concentration relaxe vers un état stationnaire en
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Figure 2.1: Schéma du système étudié. Un flux entrant de particules F fait croître deux interfaces
h+(x, t) et h−(x, t) en direction l’une de l’autre. Les particules se déplacent sur la surface libre
par diffusion avec un coefficient D, et peuvent aussi s’accrocher et se décrocher des bords avec un
coefficient cinétique ν.

un temps caractéristique qui est beaucoup plus court que celui relié au mouvement des fronts.
Ainsi, nous pouvons considérer ∂tc(x, y, t) = 0 dans l’Eq. (2.1), ce qui aboutit à

0 = DΔc+ F. (2.2)

Nous considérons également que les propriétés des fronts sont isotropes. La vitesse normale
des fronts est donnée par

vn± = ∓ ∂th±(x, t)
[1 + (∂xh±)2]−1/2

, (2.3)

et dépend linéairement de l’écart de concentration avec le bord à l’équilibre [9]

vn±
Ω

= ν(c± − ceq,±), (2.4)

où Ω est la surface occupée par une particule, et ν est un coefficient cinétique. De plus, c± =
c(x, y = ±h(x, t), t) et ceq,± correspondent respectivement à la concentration instantanée et à la
concentration d’équilibre au niveau des bords ±. La concentration d’équilibre à proximité des
bords s’écrit [9]

ceq,± = c0eq
(
1 + Γκ±

)
, (2.5)

où les κ± sont les courbures des bords ±. L’échelle de longueur Γ est donnée par

Γ =
γ̃(ψ)Ω

kBT
, (2.6)

et est donc proportionnelle à la rigidité de ligne du front γ̃(ψ) définie ci-après. Pour une ligne
dont la normale fait un angle ψ avec l’axe y, la rigidité de ligne est reliée à la tension de ligne γ
par l’équation [100] :

γ̃ = γ + ∂ψψγ. (2.7)

Finalement, la conservation de la masse au niveau des fronts nous donne :

vn±
Ω

= 	n± · (D	∇c±), (2.8)

où 	n± sont les vecteurs normaux, dirigés par convention vers le substrat. Le sytème d’équations
(2.2), (2.4) et (2.8) détermine complètement la dynamique des fronts.
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2.1.3 Bords des domaines droits

Les fronts droits et parallèles sont la solution la plus simple de ce modèle déterministe. En
choisissant l’origine de la coordonnée y au milieu entre les deux fronts, nous obtenons :

h±(x, t) = ±h̄(0)(t), (2.9)

Le champ de concentration associé s’écrit :

c(0)(y, t) = c̄(0)(t) +
F

2D

(
h̄(0)(t)2 − y2

)
. (2.10)

La concentration au niveau des bords est donnée par

c̄(0)(t) = c0eq +
Fh̄(0)(t)

ν
. (2.11)

En conséquence, au voisinage des bords, la concentration est supérieure à la concentration
d’équilibre d’une valeur donnée par le rapport Fh̄(0)(t)/ν. Cela reflète l’équilibre entre la déposition
de particules qui fait croître la concentration et l’attachement qui fait décroître la concentration.
De plus, le flux de diffusion de masse sur les bords s’écrit

∓D∂yc
(0)(y, t) = ±Fh̄(0)(t). (2.12)

Ainsi, la conservation de la masse sur les bords (2.8) aboutit à

∂th̄
(0) = −ΩFh̄(0), (2.13)

h̄(0)(t) = h̄(0)(0)e−ΩFt. (2.14)

Comme annoncé ci-dessus, les deux fronts ralentissent quand ils s’approchent l’un de l’autre. Ce
ralentissement exponentiel, connu sous le nom d’effet Zénon [99], suggère que les deux fronts
s’approchent mais ne se touchent jamais. L’effet Zénon a été suggéré comme origine de l’absence
de fusion entre les monticules formés par homo-épitaxie en présence d’effet Schwoebel [62], [99],
menant à la formation de tranchées profondes observées expérimentalement entre les monticules.

2.1.4 Dynamique déterministe des perturbations autour de la configuration
de bords plats

La position du front est décomposée en la somme de deux termes, sa valeur moyenne et une
perturbation autour de la valeur moyenne h

(1)
± (x, t) :

h±(x, t) = ±h̄(0)(t) + h
(1)
± (x, t), (2.15)

La même décomposition est utilisée pour le champ de concentration :

c(x, y, t) = c(0)(y, t) + c(1)(x, y, t). (2.16)

Dans la suite, on omettra la dépendance explicite de h et c en x, y, t à moins que ce ne soit
nécessaire.

À partir de (2.2), les perturbations du champ de concentration obéissent à :

∂xxc
(1) + ∂yyc

(1) = 0. (2.17)

La contribution linéaire (on enlève les infiniments petits d’ordre 2 et plus) aux conditions limites
(2.4) et (2.8 ) en y = ±h̄(0) aboutit à

c
(1)
± ± D

ν
∂yc

(1)
∣∣∣
±
= ±h

(1)
±

(
Fh̄(0)

D
+

F

ν

)
± c0eq,±Γ∂xxh

(1)
± . (2.18)
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Nous définissons la transformée de Fourier spatiale fq d’une quelconque fonction f(x) comme

fq =

∫ +∞

−∞
dx f(x) e−iqx. (2.19)

En utilisant la transformée de Fourier par rapport à x et t, l’Eq. (2.17) se réécrit

− q2c(1)q (y) + ∂yyc
(1)
q (y) = 0, (2.20)

et que le profil de concentration prend la forme

c(1)q (y) = a(1) cosh(qy) + b(1) sinh(qy). (2.21)

En utilisant les conditions aux limites (2.18) nous obtenons

a(1) =
Δh

(1)
q

2Uq

(
Fh̄(0)

D
+

F

ν
− c0eqΓq

2

)
, (2.22)

b(1) =
Σh

(1)
q

2Vq

(
Fh̄(0)

D
+

F

ν
− c0eqΓq

2

)
, (2.23)

où nous définissons les modes en phase et en opposition de phase des perturbations du front :

Σh(1)q = h
(1)
+,q + h

(1)
−,q, (2.24)

Δh(1)q = h
(1)
+,q − h

(1)
−,q, (2.25)

et les fonctions de q

Uq = cosh k +
D

ν
q sinh k, (2.26)

Vq = sinh k +
D

ν
q cosh k, (2.27)

où k = qh̄(0).
La dynamique déterministe des fluctuations des fronts sont ensuite obtenues par substitution

de l’Eq. (2.21) dans celle de conservation de la masse (2.8)

∂tΣh
(1)
q = λΣqΣh

(1)
q , (2.28)

∂tΔh(1)q = λΔqΔh(1)q , (2.29)

où λΣq et λΔq sont les taux de croissance des modes en phase et en opposition de phase

λΣq =
Ω

Vq

(
F
(
k cosh k − sinh k

)
−Dc0eqΓq

3 cosh k
)
, (2.30)

λΔq =
Ω

Uq

(
F
(
k sinh k − cosh k

)
−Dc0eqΓq

3 sinh k
)
. (2.31)

Si le taux de croissance est positif alors les perturbations grandissent, mais s’il est négatif,
alors les perturbations s’atténuent. Notons que les modes Σh et Δh obéissent à deux équations
indépendantes (2.28) et (2.29) qui n’ont pas de terme croisé. Ce sont donc les modes propres des
fluctuations.

Plusieurs effets physiques sont inclus dans la modélisation de ces taux de croissance. Première-
ment, les perturbations sont sujettes à l’instabilité de Mullins-Sekerka. En effet, les perturbations
se développent à cause d’un effet de pointe par lequel un plus grand nombre d’atomes s’attachent
aux protubérances des fronts. Cette instabilité est atténuée lorsque la cinétique d’attachement est
plus lente, c’est-à-dire pour des petites valeurs de ν. De plus, l’instabilité de Mullins-Sekerka est
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plus intense lorsque le flux de particules entrantes est plus élevé au voisinage des bords. Comme
les flux de masse sont proportionnels à la distance entre les deux bords 2h̄(0) dans l’équation
(2.12), et que cette distance diminue avec le temps, alors l’instabilité perd de sa force avec le
temps.

De plus, au fur et à mesure que les deux fronts se rapprochent, les perturbations sont de plus
en plus fortement couplées. Un effet important de ce couplage est la répulsion des deux fronts
limitée par la diffusion, ce qui induit une forte atténuation du mode en opposition de phase. En
effet, les perturbations du mode en opposition de phase induisent une dépendance spatiale de la
distance entre les deux fronts. Comme les fronts ralentissent en s’approchant, les endroits où les
fronts sont plus éloignés croissent plus rapidement, tandis que les régions où les fronts sont plus
proches croissent plus lentement. En conséquence, les perturbations du mode en opposition de
phase s’atténuent. En revanche, ce mécanisme n’affecte pas le mode en phase, qui n’affecte pas la
distance relative entre les deux fronts.

Finalement, la tension de ligne tue la rugosité à courte longueur d’onde. Cependant, les
perturbations à grande longueur d’onde induisent une plus petite augmentation de la longueur
totale des fronts, et donc de l’énergie totale du système. Par conséquent, la tension de ligne
élimine moins efficacement les fluctuations à grandes longueurs d’onde qu’à petites longueurs
d’onde.

Combinant tous ces effets, les taux de croissance λΣq et λΔq sont représentés sur les Figs.
2.2(a) et 2.2(b). Nous observons qu’une instabilité, caractérisée par une valeur positive de λ
apparaît pour les deux modes. Cependant, les modes à grande longueur d’onde (ou à petit q)
sont stables pour le mode en opposition de phase. Cette stabilisation provient de la répulsion
limitée par la diffusion qui est efficace pour les grandes longueurs d’onde des deux fronts. Par
ailleurs, les modes à courte longueur d’onde (ou à grand q) sont toujours stabilisés par la tension
de ligne. De plus, nous observons que l’instabilité devient de plus en plus faible avec le temps, et
qu’elle disparaît finalement avec la décroissance de h̄(0).

Figure 2.2: Taux de croissance des perturbations. (a) λΣq pour le mode en phase. (b) λΔq pour
le mode en opposition de phase. Les couleurs correspondent aux différentes distances entre les
deux interfaces : h̄(0) = 32 (bleu foncé), h̄(0) = 20 (bleu), h̄(0) = 8 (violet), h̄(0) = 4 (rouge). Une
instabilité, qui correspond à un λΣq ou un λΔq positif, est présente pour les grandes valeurs de
h̄(0), et disparait pour les faibles valeurs de h̄(0). Nous avons utilisé les valeurs suivantes pour les
paramètres du modèle : Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05, F = 1, ν = 1, L = 512.

2.1.5 Description de Langevin

Les équations (2.28) et (2.29) dictent l’atténuation ou la croissance déterministe des perturba-
tions. Cependant, ils n’incluent pas de génération de rugosité par les fluctuations statistiques.
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Nous recourons aux forces de Langevin pour décrire ces fluctuations :

∂tΣh
(1)
q = Σh(1)q λΣq + ηΣq + ϕΣq, (2.32)

∂tΔh(1)q = Δh(1)q λΔq + ηΔq + ϕΔq, (2.33)

Nous séparons ici les forces de Langevin en deux types de contributions. Les fluctuations qui
proviennent de l’attachement des atomes fraichement déposés et qui n’ont pas encore été accrochés
au bord sont comptabilisées dans les termes ϕΣq et ϕΔq. Par contre, les fluctuations reliées au
processus de détachement-diffusion-réattachement des atomes est donné par les contributions de
ηΣq et ηΔq. Les solutions de (2.32) et (2.33) s’écrivent :

Σh(1)q (t) = Σh(1)q (0) e
∫ t
0 dt′λΣq(t

′) +∫ t

0
dt′
{
e
∫ t
t′ dt

′′λΣq(t
′′) (ηΣq(t

′) + ϕΣq(t
′)
)}

, (2.34)

Δh(1)q (t) = Δh(1)q (0) e
∫ t
0 dt′λΔq(t

′) +∫ t

0
dt′
{
e
∫ t
t′ dt

′′λΔq(t
′′) (ηΔq(t

′) + ϕΔq(t
′)
)}

. (2.35)

Dans la suite, nous allons caractériser les fluctuations des interfaces par le carré de leur
rugosité

W 2
±(t) =

1

L

∫ L

0
dx h2± −

(
1

L

∫ L

0
dx h±

)2

, (2.36)

W 2
±(t) =

1

L

∫ L

0
dx h2± −

(
1

L

∫ L

0
dx h±

)2

. (2.37)

Pour la suite, il est pratique de définir le carré de la rugosité du mode en phase Σh(x, t) =
h+(x, t) + h−(x, t) (qui est égal à deux fois la position moyenne du front (h+(x, t) + h−(x, t))/2),
et du mode en opposition de phase Δh(x, t) = h+(x, t)− h−(x, t) (qui est égal à la distance entre
les deux fronts) :

W 2
Σ(t) =

1

L

∫ L

0
dx Σh(x, t)2 −

(
1

L

∫ L

0
dx Σh(x, t)

)2

. (2.38)

W 2
Δ(t) =

1

L

∫ L

0
dx Δh(x, t)2 −

(
1

L

∫ L

0
dx Δh(x, t)

)2

. (2.39)

Les valeurs attendues pour le carré de ces rugosités sont

〈W 2
Σ(t)〉 =

1

L

∫ L

0
dx〈|Σh(1)|2〉 = 1

L

∑
q �=0

dq

2π
〈|Σh(1)q |2〉, (2.40)

〈W 2
Δ(t)〉 =

1

L

∫ L

0
dx〈|Δh(1)|2〉 = 1

L

∑
q �=0

dq

2π
〈|Δh(1)q |2〉, (2.41)

où 〈 〉 est la notation utilisée pour une moyenne d’ensemble sur les fluctuations des forces de
Langevin.

Les corrélations du bruit de déposition ϕ sont calculées à l’aide d’un simple modèle unidi-
mensionnel. Nous démarrons avec la déposition et la diffusion de particules entre les deux fronts
dans un modèle discret, et nous prenons ensuite la limite continue. La procédure est détaillée en
Annexe A.1. En considérant un système périodique d’une longueur totale L le long de la direction
x, nous trouvons

〈ϕiq(t)ϕjq′(t
′)〉 = 2Ω2Fh̄(0) δi,j δ(t− t′) δn+n′L, (2.42)
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où les indices i et j représentent Σ ou Δ. De plus, l’indice n représente les modes de Fourier selon
x avec un nombre d’onde q = 2πn/L.

Contrairement au processus de déposition, qui est un processus irréversible hors-équilibre dans
notre modèle, le processus de détachement-diffusion-réattachement d’atomes peut donner lieu à
un équilibre thermodynamique. Nous avons ainsi recours à une approche différente fondée sur
l’utilisation du théorème de fluctuation-dissipation qui est défini au voisinage de l’équilibre, pour
calculer les corrélations de η [24]. Sachant que ce processus est indépendant de la diffusion des
atomes fraîchement déposés, nous considérons un état d’équilibre en forçant simplement F = 0.
À partir de (2.32) et (2.33), nous obtenons ainsi :

∂tΣh
(1)
q = −Σh(1)q ΩDc0eqΓq

3 cosh k

Vq
+ ηΣq, (2.43)

∂tΔh(1)q = −Δh(1)q ΩDc0eqΓq
3 sinh k

Uq
+ ηΔq. (2.44)

Comme l’équilibre est un état stationnaire en temps et que les propriétés du système sont
spatialement homogènes suivant x, les fluctuations sont un processus stationnaire en temps t et
en espace x. Nous faisons ainsi l’hypothèse que la fonction d’autocorrélation de η prend la forme
suivante :

〈ηΣq(t)ηΣq′(t
′)〉 = δn+n′ δ(t− t′)BΣqL, (2.45)

〈ηΔq(t)ηΔq′(t
′)〉 = δn+n′ δ(t− t′)BΔqL. (2.46)

où BΣq et BΔq sont constantes par rapport à ω. La rugosité des fronts peut être déterminée
dans notre modèle et dépend de BΣq et BΔq. Cependant, à l’équilibre, le spectre statique est
complètement déterminé par la rigidité de ligne γ̃(ψ) du front de propagation [9] :

〈|h(1)q |2〉eq =
kBT

γ̃q2
L, (2.47)

où nous avons défini γ̃ = γ̃(ψ = 0) avec ψ = 0 l’orientation moyenne des bords. La rugosité s’écrit
ainsi :

〈|W 2|〉eq =
1

L2

∑
n �=0

〈|h(1)q |2〉eq =
kBTL

12γ̃
=

ΩL

12Γ
, (2.48)

avec Γ = Ωγ̃/kBT . Cette expression à l’équilibre doit être cohérente avec celle de la rugosité en
fonction de BΣq et BΔq. Cela impose l’expression des deux amplitudes

BΣq = 4Ω2Dc0eq

[
q cosh k

Vq

]
, (2.49)

BΔq = 4Ω2Dc0eq

[
q sinh k

Uq

]
. (2.50)

Puisque les corrélations du bruit sont complètement déterminées, nous obtenons l’expression
des deux contributions à la rugosité, dépendantes du temps, à partir de la combinaison des
Eqs.(2.34), (2.40) et (2.41)

〈W 2
Σ〉 =

1

L2

∑
n �=0

{|Σh(1)q (0)|2 e2
∫ t
0 dt′λΣq +

L

∫ t

0
dt′{e2

∫ t
t′ dt

′′λΣq(BΣq + 2Ω2Fh̄(0))}}. (2.51)

〈W 2
Δ〉 =

1

L2

∑
n �=0

{|Δh(1)q (0)|2 e2
∫ t
0 dt′λΔq +

L

∫ t

0
dt′{e2

∫ t
t′ dt

′′λΔq(BΔq + 2Ω2Fh̄(0))}}. (2.52)
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Pour les évaluations numériques, les expressions complètes (2.51) et (2.52) sont peu pratiques.
Pour les évaluer numériquement, nous intégrons leur dérivée temporelle au lieu de calculer
directement les intégrales sur le temps. Nous évaluons ainsi les densités de puissance spectrale
〈|Σh(1)q (t)|2〉 des contributions Σ à la rugosité de chaque mode q en résolvant

∂t〈|Σh(1)q (t)|2〉 = 2λΣq(t)〈|Σh(1)q (t)|2〉+BΣqL+ 2Ω2Fh̄(0)L (2.53)

avec un schéma d’Euler. Une procédure similaire est utilisée pour la contribution Δ de la rugosité :

∂t〈|Δh(1)q (t)|2〉 = 2λΔq(t)〈|Δh(1)q (t)|2〉+BΔqL+ 2Ω2Fh̄(0)L. (2.54)

2.2 Analyse du modèle

2.2.1 Évolution temporelle de la rugosité

Nous avons étudié la dynamique en démarrant de fronts plats à t = 0, c’est à dire que pour
chaque q

〈|Σh(1)q (0)|2〉 = 〈|Δh(1)q (0)|2〉 = 0. (2.55)

Différents types d’évolution ressortent selon le flux entrant de particules F et sont tracés sur
la Fig. 2.3. Pour des petites valeurs de flux, les rugosités en phase W 2

Σ et en opposition de phase
W 2

Δ sont initialement identiques et grandissent à cause des fluctuations statistiques. Lorsque
deux interfaces se retrouvent plus proches l’une de l’autre, la rugosité en opposition de phase
W 2

Δ décroît rapidement à cause de la répulsion diffusive entre les deux interfaces. Cependant,
la rugosité en phase W 2

Σ continue de croître avant d’atteindre asymptotiquement une valeur
constante. Quand le flux entrant est plus grand, la rugosité présente une croissance plus rapide
aux temps courts. Une fois de plus, W 2

Δ décroît rapidement quand les deux interfaces s’approchent
l’une de l’autre. Cependant, W 2

Σ décroît ensuite quand les interfaces s’approchent l’une de l’autre.
Finalement, pour des temps plus longs, la rugosité en phase W 2

Σ se remet à croître et atteint la
même valeur asymptotique, qui ne dépend pas du flux F .

Dans les paragraphes suivants, nous discutons de manière plus détaillée l’évolution temporelle
de la rugosité.

2.2.2 Rugosité aux temps courts en régime de déposition aléatoire (RD)

Un développement linéaire de l’Eq. (2.51) avec des conditions initiales plates (2.55) révèle que
le carré de la rugosité est linéaire avec le temps aux temps courts

〈W 2
Σ〉 =

(
Ωc0eqχ+ΩF

h(0)(0)

a

)
2Ωt, (2.56)

où a est un cutoff microscopique selon la direction x. Le nombre total de modes est fixé à L/2a, ce
qui implique que le cutoff pour la plus petite longueur d’onde est λc = 2a. De plus, nous définissons
un facteur cinétique χ = πD/a2 pour les cinétiques d’attachement rapides ν/Dh(0)(0) � 1 et
χ = 2ν/a pour les cinétiques lentes ν/Dh(0)(0) � 1. La dérivation de l’équation (2.56) est donnée
en annexe A.3.

Un comportement linéaire du carré de la rugosité est associé au processus RD. Dans ce
cas, les évènements d’attachement et de détachement non corrélés rendent la surface rugueuse
aux temps courts [9], [17]. Ces évènements décorrélés d’attachement et de détachement mènent,
pour un x donné, à la diffusion de l’interface dans la direction y. Puisque les processus de
diffusion sont caractérisés par un déplacement quadratique moyen proportionnel à t, on retrouve
la dépendance linéaire de l’équation (2.56). Le premier terme de l’Eq. (2.56) représente les
évènements détachement-diffusion-réattachement, le second terme représente les évènements
déposition-diffusion-attachement. Nous pouvons remarquer également que 〈W 2

Σ〉 dépend, aux
temps courts, du cutoff microscopique a suivant la direction x.
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Figure 2.3: a) Évolution de la position moyenne des interfaces. b) Rugosité du mode en phase
(en traits pleins) et du mode en opposition de phase (en lignes pointillées) pour ν = 1 et pour
différentes valeurs de flux : F = 10−1 en rouge, F = 10−2 en vert et F = 10−4 en bleu. La solution
de l’équation (2.59) est tracée en bleu clair pour F = 10−4. c) Rugosité des modes en phase et en
opposition de phase pour F = 10−1 et pour différentes valeurs de cinétique ν : ν = 10−1 en rouge
foncé, ν = 1 en rouge et ν = 101 en rouge clair. De plus, Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05,
L = 512, h̄(0)(0) = 32. La ligne pointillée noire représente la rugosité à l’équilibre W 2

eq. Les deux
lignes discontinues-pointillées sont utilisées comme guide pour W 2

Σ ∝ t et W 2
Σ ∝ t1/2.

2.2.3 Rugosité d’équilibre asymptotique

Dans la limite opposée aux temps longs, nous observons que la rugosité en phase atteint une
valeur constante, alors que la rugosité en opposition de phase disparaît. Les modes en opposition
de phase sont en fait éliminés efficacement par la répulsion diffusive entre les deux interfaces,
de sorte que 〈W 2

Δ〉 → 0. Sachant que l’amplitude du mode en opposition de phase disparaît,
l’interface est composée de deux fronts en phase, ayant un profil identique aux temps longs. En
conséquence, cette interface effective constituée des deux fronts présente des fluctuations qui
sont identiques à celles d’une interface possédant une tension de ligne 2γ. Le profil de l’interface
effective est (h++h−)/2 = Σh/2, ce qui induit que sa rugosité est 〈W 2

Σ〉/4. En utilisant la formule
à l’équilibre de l’Eq. (2.48) pour l’interface effective avec une tension de ligne doublée, nous
obtenons 〈W 2

Σ〉/4 = ΩL/(12× 2Γ). Cela aboutit à la valeur asymptotique de la rugosité

〈W 2
Σ〉 =

ΩL

6Γ
(2.57)

〈W 2
Δ〉 → 0 (2.58)

Comme observé en Fig. 2.3, ce résultat est en accord quantitatif avec la valeur asymptotique
〈W 2

Σ〉/4 dans la résolution purement numérique du modèle de Langevin.

2.2.4 Rugosification proche équilibre de type Edwards-Wilkinson

Dans la limite des petits flux F de la Fig 2.3, la rugosité s’établit lentement et augmente
continûment jusqu’à atteindre sa valeur d’équilibre (2.57). Comme le spectre de puissance à
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l’équilibre (2.47) est dominé par les grandes longueurs d’onde (c’est-à-dire les petits q), nous
prévoyons que le développement limité aux grandes longueurs d’onde puisse contenir la physique
de la convergence vers l’équilibre. Dans la limite q → 0, une expression relativement simple de
〈W 2

Σ〉 peut être obtenue

〈W 2
Σ〉 =

ΩL

2π2Γ

∑
n �=0

1

n2
(1− e−vn2

), (2.59)

où

v = 2ΩΓ

(
2π

L

)2 νc0eq
ΩF

ln
1 + D

νh̄(0)(t)

1 + D
νh̄(0)(0)

> 0. (2.60)

Les détails de la dérivation sont reportés en Annexe A.2. Cette expression semble fournir une
bonne approximation de l’évolution de 〈W 2

Σ〉 pour des petits flux de déposition F de la Fig. 2.3.
À partir de l’Eq. (2.59), nous constatons que la rugosité tend vers sa valeur d’équilibre de

l’Eq. (2.57) aux temps longs. En effet, lorsque t → +∞, la distance entre les deux fronts disparaît
h̄(0)(t) → 0, de sorte que v → +∞ et e−vn2 → 0 dans l’Eq. (2.57).

Dans les régimes où le temps t n’est pas trop court de manière à ce que les grandes lon-
gueurs d’onde aient suffisamment de temps pour se développer, et pas trop long de sorte que la
rugosité d’équilibre ne soit pas encore atteinte, nous obtenons l’habituelle loi d’échelle d’Edwards-
Wilkinson [17]

〈W 2
Σ〉 � Ω

(
Ωc

(0)
eq

1/ν + h̄(0)(0)/D

8t

πΓ

)1/2

(2.61)

qui est associé à la rugosification proche équilibre [17], [101]. La dérivation de l’Eq. ((2.61) est
reportée dans l’annexe A.2.

2.2.5 Pic de rugosité pour les forts flux de déposition F

Avant la collision, les trois sources de rugosité sont l’instabilité de Mullins-Sekerka, le bruit
hors équilibre ϕ et le bruit d’équilibre η. Les deux premières sources sont renforcées lors d’une
croissance rapide par un F plus grand. Elles surpassent donc l’effet stabilisateur de la tension de
ligne ce qui mène à une forte augmentation de la rugosité avant la collision. Mais pendant et après
la collision, elles sont arrêtées car la déposition décroît et tend vers zéro dû au rapprochement
des interfaces (h(0) → 0). Or, la rigidité de ligne γ̃ continue à supprimer efficacement toutes les
perturbations qui ne sont pas à grande longueur d’onde, ce qui mène à une chute rapide de la
rugosité. Finalement à temps longs, le bruit d’équilibre η qui persiste ré-augmente lentement la
rugosité jusqu’à ce qu’un équilibre soit atteint. En résumé la rugosité passe par un maximum
puis un minimum, comme on peut le voir sur la Figure 2.3.

L’estimation du temps tpeak pour lequel le pic de rugosité apparaît peut être obtenu dans la
limite des cinétiques d’attachement-détachement lente et rapide.

Quand la cinétique est lente, la rugosité est dominée par les fluctuations statistiques. En
négligeant les contributions reliées aux fluctuations d’équilibre du côté droit de l’équation (2.53),
et en considérant que la rugosité est dominée par les modes de courte longueur d’onde autour de
la valeur du cutoff microscopique qc = π/a, nous obtenons

tpeak =
1

ΩF − 2νΓc0eqπ
2
ln

(
ΩF

2νΓc0eqπ
2

)
. (2.62)

Les détails de ce calcul sont reportés en Annexe A.4.
Dans la limite opposée, pour les régimes de cinétique d’attachement-détachement rapide, nous

supposons que la rugosité est dominée par l’instabilité de Mullins-Sekerka. Nous appelons tc le
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temps pour lequel l’instabilité disparaît. Comme discuté ci-dessus, l’instabilité disparaît lorsque
la distance entre les deux interfaces décroît. Sur la Fig. 2.2, nous remarquons que l’instabilité
disparaît lorsque le taux de croissance du mode λΣq change de signe aux grandes longueurs d’onde,
c’est-à-dire aux petits q. À partir d’un développement de λΣq autour de q → 0, l’instabilité
disparait lorsque h̄(0)(t) devient plus petit que h̄(0)(tc) = (3c0eqΓD/F )1/3. En faisant appel à l’Eq.
(2.14), cela correspond à

tc =
1

3ΩF
ln
( Fh

(0) 3
0

3c0eqDΓ

)
. (2.63)

Comme indiqué en Fig. 2.4, les valeurs du temps du pic tc obtenues à partir des résolutions
numériques du modèle de Langevin pour des forts flux de déposition F sont en accord avec
l’Eq. (2.62) pour des cinétiques d’attachement-détachement lentes, et avec l’Eq. (2.63) pour des
cinétiques rapides.

Figure 2.4: Temps auquel le pic de rugosité est atteint en fonction du flux F . Les triangles
(reliés par des lignes pointillées) sont tirées de la résolution numérique du modèle avec les valeurs :
ν = 10−2 (vert), ν = 1 (violet), et ν = 104 (bleu). Les courbes en traits pleins correspondent à
l’expression approximée de l’Eq. (2.62) dans le régime dominé par les fluctuations. La courbe
rouge en trait plein correspond à l’expression approximée de l’Eq. (2.63) pour le régime dominé
par l’instabilité. Les autres paramètres du modèle sont Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05,
L = 512, and h̄(0)(0) = 32.

2.2.6 Classification des régimes de rugosité

Dans ce paragraphe, nous voulons identifier les différents régimes d’évolution de la rugosité
en fonction des différents paramètres physiques. Pour identifier les contributions qui dominent
l’évolution de la rugosité, nous analysons l’évolution du rapport entre le terme déterministe et la
somme des termes stochastiques (2.53) :

RΣ(t) =

∑
n �=0 2λΣq(t)〈|Σh(1)q (t)|2〉∑

n �=0

(
BΣq(t) + 2Ω2Fh̄(0)(t)

)
L
. (2.64)

où nous rappelons que q = 2π/(nL) et L est la taille du système suivant x. Le dénominateur de
RΣ est toujours positif. Ainsi le signe du numérateur donne le signe de RΣ. La valeur spéciale
RΣ = −1 correspond à ∂t〈|Σh(1)q (t)|2〉 = 0 dans l’Eq. (2.53). L’état d’équilibre qui est toujours
obtenu à temps longs respecte cette condition. Ainsi, RΣ converge toujours vers −1 aux temps
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longs, c’est-à-dire pour t → ∞. Lorsque RΣ coupe la ligne RΣ = −1 à un temps fini, la rugosité
atteint un extremum, qui est soit un maximum si RΣ diminue, ou un minimum si RΣ augmente.

De plus, RΣ peut être positif si λΣq(t) > 0 pour certaines valeurs de q, c’est-à-dire, uniquement
en présence d’instabilité de Mullins-Sekerka. Nous fixons arbitrairement le seuil pour un régime
dominé par l’instabilité en RΣ > 1 à un certain moment pendant la dynamique. Par ailleurs,
lorsque RΣ < 1 et RΣ coupe la ligne RΣ = −1, nous considérons que la dynamique appartient au
régime avec un pic de rugosité dominé par les fluctuations. Finalement, en absence d’instabilité
déterministe de Mullins-Sekerka, nous avons λΣq(t) < 0 quelle que soit la valeur de q et ainsi
RΣ < 0. C’est pourquoi si 0 < RΣ < −1 à tout temps t, nous caractérisons la dynamique comme
appartenant au régime de rugosification monotone.

Certains exemples de ces dynamiques sont reportés sur la Fig. 2.5. Les lignes noires verticales
en traits discontinus pointillés marquent les extrema locaux de rugosité. Ils coïncident avec les
évènements RΣ = −1.

Figure 2.5: Évolution temporelle de W 2
Σ et de RΣ. RΣ est défini dans (2.64) comme l’amplitude du

rapport des termes déterministes et stochastiques. Cela permet de définir un critère de classification
dans le diagramme de phase de la Fig. 2.7. Les traits discontinus-pointillées marquent les extrema
locaux de rugosité. Ils coïncident avec les évènements RΣ = −1. Dans ce modèle, nous utilisons les
paramètres suivants : ν/D = 0.4, Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05, L = 512, h̄(0)(0) = 32.
a) F/D = 1.2 10−3. b) F/D = 2.0 10−4. c) F/D = 2.0 10−6.

Une autre façon de classifier les régimes est d’identifier l’exposant de la croissance initiale du
carré de la rugosité. L’exposant peut être 1/2, ce qui correspond à une croissance lente de type
EW. Il peut aussi être égal à 1 avant le pic de rugosité, ce qui correspond à une croissance du pic
liée à l’attachement-détachement. Finalement, s’il est supérieur à 1, nous considérons que nous
avons une instabilité morphologique. Pour expliciter le critère de détermination de la position des
symboles rouges et oranges sur la Fig. 2.7, nous ajoutons un guide de la forme de l’évolution des
rugosités et leur exposant associé sur la Figure 2.6.

La Fig. 2.7 récapitule les différentes occurrences de ces régimes en fonction de F/D et de ν/D.
La frontière entre le régime de rugosification monotone et le régime de pic de rugosité dominé par
les fluctuations est linéaire en ν pour les faibles valeurs de cinétique d’attachement-détachement,
alors que la frontière entre le régime de rugosification monotone et le régime du pic dominé par
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Figure 2.6: Rugosité du mode en phase pour différentes valeurs de F . En bleu F = 5.10−2, en
vert F = 1, en rouge F = 4. Les pentes sont affichées pour guider le lecteur dans la reconnaissance
des comportements asymptotiques : en bleu W 2

Σ ∝ t1/2, en vert W 2
Σ ∝ t et en rouge W 2

Σ ∝ t2.
Nous avons utilisés les paramètres suivants pour les modèles : Ω = 1, D = 104/4, c0eq = 10−2,
Γ = 4.05, L = 512, h̄(0)(0) = 32, ν = 103.

les instabilités correspond à une valeur constante de F/D de l’ordre de grandeur 1.

Figure 2.7: Diagramme de phase de la rugosité dans le plan des paramètres (F/D, ν/D), ainsi que
des formes des rugosités dans les trois domaines. Dans ce modèle, nous avons utilisé les paramètres
suivants : Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05, L = 512, h̄(0)(0) = 32. Les triangles bleus
définissent les trois régions. Le domaine vert correspond au régime de rugosification monotone. Le
premier maximum de rugosité dans le domaine bleu représente un cas où le système est dominé par
les fluctuations hors-équilibre. Le premier maximum de rugosité dans le domaine rouge correspond
cette fois à un cas où le système est dominé par l’instabilité morphologique de Mullins-Sekerka. Les
triangles oranges et rouges donnent respectivement les paramètres pour lesquels la rugosité vérifie
une loi d’échelle en W 2 ∝ t1/2 et W 2 ∝ t2. a) F/D = 4.10−8, ν/D = 4.10−4. b) F/D = 4.10−5,
ν/D = 4.10−3. c) F/D = 4.10−3, ν/D = 4.10−1.

2.3 Conclusion

En résumé, nous avons présenté un modèle de Langevin de collision d’interfaces qui vise à
décrire la formation d’un joint de grains dans les matériaux 2D. Des développements passés
de modèles de Langevin ont déjà montré leur efficacité pour décrire la rugosité d’interfaces 1D
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(marches atomiques par exemple) par des comportements asymptotiques en loi d’échelle [9].
Cependant, la formation de joints de grains est un problème complexe car cela met en jeu des
phénomènes transitoires en temps fini.

Une première avancée dans la modélisation des joints de grains [69] a permis de modéliser les
collisions d’interfaces en présence d’interactions à courte-portée. Pour se rapprocher des conditions
expérimentales, nous pourrions ajouter des interactions à longue portée et des fluctuations
associées à la diffusion de particules, mais cela entraîne des difficultés techniques supplémentaires.
La croissance du matériau et la jonction des deux domaines sont alors gouvernées par effet Zénon.
L’état de référence des interfaces est donc dépendant du temps, et les fluctuations émergent
comme des perturbations de cet état.

Le modèle de Langevin présenté dans ce chapitre vise à s’attaquer à ce problème. Il nous
permet d’identifier les caractéristiques majeures dans la formation des joints de grains associées
aux fluctuations statistiques et aux instabilités. Nous constatons qu’une croissance suffisamment
rapide est accompagnée d’un comportement non monotone de la rugosité en fonction du temps,
avec un pic et un minimum avant de passer par une lente relaxation du joint de grains après
la collision vers son état d’équilibre. L’instabilité de régime limité par la diffusion et le bruit
statistique entrent en compétition pour la production de rugosité. Cette compétition donne
naissance à différents régimes qui sont résumés dans un diagramme de phase.
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Chapitre 3

Simulations de Monte-Carlo cinétique
(KMC)

Dans ce chapitre, nous abordons la modélisation des collisions d’interfaces à l’aide d’un modèle
sur réseau. Plutôt que de chercher à reproduire fidèlement les mécanismes microscopiques qui
régissent la dynamique de la croissance d’un matériau 2D particulier, nous utilisons un modèle
simple qui prend en compte les ingrédients physico-chimiques essentiels. Ce modèle est simulé
numériquement à l’aide d’un algorithme Monte Carlo Cinétique (KMC).

Nous allons d’abord décrire le modèle utilisé en définissant les grandeurs observables. Les
premières analyses donnent une approche qualitative de la morphologie des bords de domaines
pour différents jeux de paramètres. En gardant en tête les trois régimes recensés au chapitre 2,
nous étudions la rugosité à faible flux F , à F intermédiaire, et à forte valeur de F . Nous analysons
ensuite la dynamique après collision vers le régime stationnaire (pour laquelle F ne joue plus de
rôle). Enfin, nous observons les influences des autres paramètres du modèle Q, D, d0 et ε.

Lors de la croissance avec un faible taux de déposition, les simulations KMC mènent à des
comportements en accord avec le modèle de Langevin décrit ci-dessus. Notamment, la transition
entre des régimes avec des évolutions temporelles monotone et non-monotone de la rugosité est
retrouvée et semble donc être une caractéristique générique et robuste des collisions d’interfaces.
De plus, à fort taux de déposition, un nouveau régime apparaît dans les simulations, pour lequel
le taux de couverture du substrat est proche de 1. La rugosité minimum atteinte après la collision
est la plus faible dans ce régime.

3.1 Modèle et méthodes

3.1.1 Algorithme BKL (Bortz, Kalos, Lebowitz)

L’historique de cet algorithme est décrit en section 1.1.3.1. L’équipe de A. B. Bortz, M. H.
Kalos et J. L. Lebowitz [11] a développé en 1975 un algorithme baptisé Monte Carlo cinétique
(KMC) dont le principe détaillé est le suivant :

• Les évènements possibles sont notés j et sont listés de 1 à N, N étant le nombre total de
processus différents. Leurs taux de transition sont notés Rj .

• On définit un taux de transition cumulé d’ordre k, Qk =
∑k

j=1Rj pour lequel on retrouve
Rj = Qk −Qk−1, ∀ k ≤ 1. La somme de tous les taux de transition est alors notée QN .

• On tire un nombre rationnel aléatoire U1 ∈ [0, QN ] distribué uniformément.

• On réalise l’évènement j tel que Qk−1 < U1 ≤ Qk.

• On incrémente le temps d’une quantité Δt qui est l’intervalle de temps stochastique entre
deux mouvements Δt = − lnu

QN
avec u ∈ [0, 1], un nombre aléatoire distribué uniformément1

[102].

À chaque itération, un évènement est effectué. La probabilité de réalisation de chaque évènement
est proportionnelle à son taux de transition Rk/QN . Cela permet une accélération de la vitesse
des simulations du modèle, notamment à basse température.

1Il convient de noter que cette formule d’incrément du temps n’est valide que si les probabilités de transition
suivent une loi de Poisson.
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Historiquement, cet algorithme a d’abord été développé pour les systèmes de spins [11].
Cependant, il est aussi devenu l’un des outils majeurs de modélisation de la croissance cristalline
[103]. En tenant compte de son efficacité, c’est donc la méthode algorithmique retenue pour les
simulations.

Dans la suite, nous allons décrire les ingrédients physiques du modèle.

3.1.2 Modèle de déposition, diffusion et agrégation

La structure des cristaux est modélisée ici par un réseau carré, différent de la géométrie de la
plupart des matériaux 2D, mais bien adapté aux calculs analytiques et numériques. Le substrat
sous le réseau carré est supposé être inerte. Chaque site du réseau est soit libre, soit occupé par
une particule mobile, soit occupé par une particule du matériaux 2D. Ces particules représentent
une molécule élémentaire (ou un atome) de graphène ou de dichalcogénure de métal. Le paramètre
du réseau est noté a.

Deux domaines solides ont initialement des interfaces plates de longueur L suivant la direction
x, et sont séparés par d’une distance 2d0, comme illustré en Fig. 3.1(a). Des conditions aux limites
périodiques sont définies dans la direction x. Ce modèle ne décrit pas les processus de nucléation
et de croissance de domaines qui aboutissent à cet état initial particulier, car son but est de
se focaliser sur les étapes plus tardives de propagation des bords et de rugosification des joints
de grains formés après leur collision. Une fois qu’elles sont accrochées à un des domaines, les
particules sont indicées par A ou B dépendant du cristal en question. Ces indices sont conservés
même après le remplissage complet de l’intervalle, de manière à ce que les deux domaines ne
fusionnent pas en un. Cette approche vise à saisir les principales caractéristiques de la croissance
des interfaces, ainsi que le reconfiguration lente des joints de grains après la collision des domaines.

Figure 3.1: (a) Configuration initiale des domaines A (jaune) et B (rouge). Dans la figure, on
utilise la notation l = 2d0. (b) Deux particules se déposant sur le substrat (flèches magenta), celle
de droite est acceptée tandis que celle de gauche est refusée (par interaction de volume exclu).
Les potentiels sauts d’un site à l’autre des particules précédemment déposées sur le substrat sont
également indiqués par des flèches noires. (c) Taux d’évolution des processus qui permettent de
passer de la configuration de gauche à la configuration de droite. Figures tirées de [77].
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Le flux de particules externes F est le nombre de particules incidentes par site par unité de
temps. Si une particule incidente atteint un site vide sur le substrat, elle devient une particule
mobile à cette position. Cependant, si elle atteint un site déjà occupé, alors elle est rejetée.
Ce processus est illustré en Fig. 3.1(b). Les particules mobiles peuvent diffuser sur le substrat,
avec une fréquence de saut vers les sites plus proches voisins égale à D̃. Un essai de saut est
exécuté seulement si le site ciblé est vide. Sinon, la particule mobile reste dans sa position initiale.
Le processus est aussi illustré par les flèches noires en Fig. 3.1(b). Le coefficient de diffusion
correspondant s’écrit

D =
D̃a2

4
. (3.1)

D’autres domaines ne peuvent pas se former au milieu du substrat, et le volume exclu est le
seul type d’interaction entre les particules mobiles. Il n’y a pas de potentiel d’attraction, ni de
lien possible entre deux atomes mobiles. Les interfaces avancent ou reculent via l’attachement et
le détachement de particules. Ces processus sont restreints, pour chaque domaine, uniquement au
sommet de colonne de coordonnée latérale x. La position de l’interface est donc donnée par une
fonction univoque de la coordonnée x. Cette contrainte est aussi appelée Solid-on-Solid (SOS)
dans la littérature. L’intérêt premier est de faciliter les interprétations entre la théorie de la
rugosité cinétique et les autres approches analytiques. De plus, la définition de la rugosité est plus
simple dans ce cas précis que dans le cas où on autoriserait la présence de parties en surplomb de
l’interface (i.e. de sinuosités suffisamment importantes pour briser le caractère univoque de la
position de l’interface en fonction de x).

Lorsqu’une particule mobile est située sur le site directement au-dessus de la dernière particule
solide d’une colonne, son attachement se produit à un taux Q. Simultanément, la particule solide
la plus haute peut se détacher du domaine à un taux Qεn, où n est le nombre de sites plus proches
voisins occupés par des particules solides de ce même domaine et ε < 1 est la probabilité de casser
un lien avec un seul site plus proche voisin. Ce paramètre ε est relié à l’énergie de lien J

ε = exp[−J/kBT ], (3.2)

où kB est la constante de Boltzmann et T la température du système. Ces processus sont illustrés
en Fig. 3.1(c).

Avec ces règles, le taux d’attachement ne dépend pas de la configuration locale du bord du
domaine. Cependant, le détachement est facilité au niveau des pointes (n = 1) et est rendu
plus difficile au niveau des régions plates (n = 3). Ce modèle permet d’avoir un équilibre
thermodynamique bien défini [8], [104] en l’absence de déposition. L’algorithme de Monte Carlo
développé pour ces simulations est semblable à celui de travaux précédents sur la croissance de
monocouche atomique [101], [104], [105].

Après la collision des interfaces, la frontière entre les domaines A et B est formée. Les règles ci-
dessus pour l’attachement et le détachement restent valables et les interactions entre les particules
des différents domaines sont limitées à la simple interaction de volume exclu. Cela signifie que la
formation de liens entre particules plus proches voisines de deux domaines différents est négligée.
C’est une approximation raisonnable si l’énergie des liens atomiques entre deux domaines est
suffisamment faible par rapport à celle des liens atomiques au sein d’un même domaine. Dans
cette approximation, les temps caractéristiques de la dynamique des interfaces avant et après la
collision restent semblables.

La diffusion, le détachement et l’attachement des particules sont supposés être des processus
activés par la température. Les taux D et Q et le paramètre ε peuvent donc dépendre de la
température. Ces paramètres peuvent alors être écrits sous une forme d’Arrhenius (voir chapitre
B.1 de l’annexe).

3.1.3 Définition des grandeurs observables

Les simulations ont été réalisées avec des réseaux de longueur L compris entre 128a et 1024a.
La plupart des résultats a été obtenue pour L = 512a. La largeur initiale du gap 2d0 varie quant
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à elle entre 16a et 128a. Les taux du modèle sont mesurés en terme de flux F . Les rapports F/D
et F/Q varient de 10−8 à 104, ces valeurs limites représentent respectivement des très bas et très
haut flux pour une température donnée.

La plupart des simulations sont réalisées avec une valeur de ε = 0.1. Cette hypothèse
est raisonnable uniquement à haute température pour la plupart des matériaux (kBT ≈ 0.43
multiplié par l’énergie d’activation par plus proche voisin). Des simulations complémentaires ont
été effectuées avec 0.01 ≤ ε ≤ 0.07 pour vérifier que les mêmes tendances sont observées. Pour
la plupart des jeux de paramètres, les quantités moyennes sont calculées sur 100 configurations
différentes, mais dans certains cas elles le sont sur 103–2× 103 configurations.

La principale quantité calculée ici est la rugosité des bords de domaines. Nous notons h (x, t)
le champ de positions d’un bord sur l’axe y pour toute position x et temps t, mesurée relativement
à la position centrale, la rugosité est définie par

W ≡ 〈 (h− h
)2 〉1/2, (3.3)

où les barres horizontales indiquent une moyenne spatiale (sur les valeurs de x pour un échantillon
donné) et les brackets indiquent une moyenne sur les configurations (sur différents échantillons).
Par symétrie des domaines A et B, la moyenne sur les configurations inclut également une moyenne
sur les deux domaines d’un même échantillon.

Nous mesurons aussi le taux de remplissage du substrat, noté θ, qui est la fraction de l’espace
libre initial sur le substrat couvert par les particules déposées

θ(t) =
Nd(t)

(L/a) (2d0/a)
, (3.4)

où Nd est le nombre total de particules déposées depuis le moment initial t = 0, et (L/a)(2d0/a)
est le nombre de sites libres initialement. Quand θ = 1, tous les sites du réseau sont occupés et
la déposition de nouvelles particules est impossible. Il convient de noter que l’attachement et le
détachement de particules n’affectent pas cette quantité, donc quand θ = 1, il peut rester des
particules mobiles non-incorporées dans les solides 2D.

Cette quantité globale ne doit pas être confondue avec une quantité locale : la concentration
normalisée (ou taux de couverture)

C̃(x, y, t) = Ωc(x, y, t), (3.5)

où Ω = a2 est l’aire occupé par une particule sur le réseau. Cette concentration normalisée sature
à la valeur C̃ = 1 lorsque le substrat est localement recouvert de particules mobiles (et n’est pas
lié à l’état de croissance du cristal). Les conditions C̃(x, y, t) = 1, en tout point de l’espace (x, y)
et θ(t) = 1 sont équivalentes. De plus, un fort taux de couverture implique forcément un fort taux
de remplissage, mais la réciproque n’est pas vraie.

Pour caractériser la transition de la croissance de l’interface (où l’attachement des particules
domine par rapport à leur détachement) à la relaxation du GB (lorsque les domaines évoluent avec
un équilibre entre attachement et détachement), nous définissons un temps moyen de collision tcol.
Pour chaque position x et une configuration de bords de domaines donnée, le temps de collision
local t(local)col (x) est défini comme le premier instant pour lequel les domaines A et B occupent des
sites plus proches voisins en une position x (quelle que soit la valeur y).

Il convient de remarquer également que le GB n’est pas gelé après la collision, les particules
peuvent ainsi se détacher d’un domaine et se réattacher ensuite sur un des deux domaines. La
valeur de tcol est obtenue en effectuant la moyenne de t

(local)
col sur toutes les positions x et sur les

différentes configurations des interfaces. Nous pouvons également définir l’écart-type du temps de
collision Δtcol.
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3.2 Résultats des simulations numériques

Dans cette partie, nous allons décrire les différents régimes d’évolution morphologique en
fonction des différentes valeurs des paramètres. Nous observons notamment de manière qualitative
puis quantitative l’évolution de la rugosité au cours de la dynamique. La rugosité, soit suit une
croissance monotone vers une valeur d’équilibre, soit atteint un pic suivi d’un minimum puis
d’une relaxation vers un état d’équilibre.

Nous analysons ensuite le temps de collision moyen dans les différents régimes, et l’évolution du
GB vers le régime stationnaire. L’influence des paramètres Q, D, d0 et ε est alors envisagée. Pour
finir, les régimes sont recensés dans un diagramme de phase rassemblant toutes ces informations.

Dans la suite de ce chapitre, nous considérerons que a = 1.

3.2.1 Évolution morphologique des bords de domaine

Les Figs. 3.2(a)-(c) montrent des instantanés du système en croissance pour différentes valeurs
de flux incident, et pour des valeurs constantes de D, Q, et ε, fixées à Q/D = 10−1 and ε = 0.1.
Les simulations réalisées ici utilisent une température constante et des flux de précurseurs F
différents. Les temps de croissance sont affichés en unité adimensionnelle Dt.

Dans cette section, nous décrivons la morphologie des bords de domaines dans les cas de
faibles valeurs de flux F , de F intermédiaire et de grand F . L’influence du coefficient de diffusion
D est aussi questionnée.

3.2.1.1 Faibles flux, régimes proches de l’équilibre

Pour les plus faibles valeurs de flux (F/D = 10−6), la Figure 3.2(a) montre que la rugosité
des interfaces en croissance est dominée par les fluctuations de grandes longueurs d’onde. Les
bosses et les creux évoluent sur des tailles typiques de 10a–30a pour Dt = 5× 105 jusqu’à des
tailles plus grandes que 30a pour Dt = 2× 106. En revanche, la rugosité ne semble pas changer
sensiblement. La densité de particules entre les deux domaines est très faible jusqu’au moment de
la collision, ce qui est confirmé par la vue grossie en Figure 3.3(a) de la zone encadrée en Figure
3.2(a). Une évolution similaire est observée pour des plus grands coefficients de diffusion des
particules, c’est-à-dire lorsque Q/D et F/D diminuent d’un même facteur, comme montré dans
l’appendice B.2. Ces caractéristiques sont représentatives du régime de croissance lente limité par
l’attachement de particules.

Pendant la collision, c’est-à-dire juste après le premier contact entre les deux fronts, la rugosité
des interfaces diminue drastiquement. Ce phénomène, également observé dans les modèles de
collisions d’interfaces sans interaction se propageant à vitesse finie, est indépendant de la physique
microscopique et du type d’interaction à courte portée [69]. Après la collision, le GB relaxe
lentement par détachement de certaines particules d’un bord suivi d’un réattachement de ces
mêmes particules sur l’autre bord, ce qui continue d’induire des changements de rugosité.

3.2.1.2 Valeurs intermédiaires de flux, instabilité de Mullins-Sekerka

Pour les valeurs intermédiaires de flux (F/D = 10−3), en conservant le même rapport Q/D,
la Fig. 3.2(b) montre la présence de pics au niveau des bords des domaines aux temps courts.
Pour Dt = 103, une forte densité de particules est déjà présente sur le substrat. Ce temps est
beaucoup plus court que celui de la Fig. 3.2(a).

La vue grossie en Figure 3.3(b) montre que la densité de particules est diminuée uniquement au
voisinage des creux des bords des domaines. La fréquence d’essais d’attachement étant largement
plus grande au niveau des pics par qu’au niveau des creux, on se retrouve dans la configuration
d’instabilité de Mullins-Sekerka déjà discutée dans le paragraphe 1.1.5 : les pics grossissent plus
vite que les creux, ce qui est également visible en comparant les snapshots à Dt = 103 et 2× 103

en Figure 3.2(b).
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Figure 3.2: Clichés du système en croissance avec Q/D = 10−1, ε = 0.1, L = 1024a, et
2d0 = 128a : (a) F/D = 10−6 ; (b) F/D = 10−3 ; (c) F/D = 10. Les rectangles bleu clair
encadrent les régions représentées en Figure 3.3.
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Figure 3.3: (a), (b), et (c) sont des zooms des régions indiquées respectivement en Figs. 3.2(a),
3.2(b), et 3.2(c).

Les pics formés lors d’une croissance instable sont caractéristiques d’un régime limité par la
diffusion. Cependant, ils ne reproduisent pas ici les formes fractales ou dentritiques observées
dans les expériences et avec d’autres modèles de croissance instable [40], [57]. Cette différence est
une conséquence de la contrainte SOS, qui restreint les conditions d’attachement des particules :
une particule ne peut s’attacher qu’au niveau du site le plus haut pour chaque position x. Cela
empêche l’attachement latéral qui serait à l’origine de morphologies plus complexes.

Juste après la collision des interfaces, les pics persistent et la rugosité du GB est initialement
très élevée. À Dt = 2× 104, la Figure 3.2(b) montre que les pics se sont transformés en structures
plus petites et plus larges. Un GB lisse est obtenu à Dt = 105. Il est important de remarquer que
ce temps est beaucoup plus court que les temps utilisés pour représenter l’évolution de la rugosité
après collision dans le régime limité par l’attachement montré en Fig. 3.2(a).

3.2.1.3 Grand flux, grande concentration C̃

La Figure 3.2(c) montre la morphologie de l’interface pour une valeur de flux bien plus élevée
F/D = 10, mais toujours avec la même valeur de Q/D.

Aux temps courts, Dt = 5× 101, la région libre est entièrement recouverte par les particules
mobiles (voir en version agrandie sur la Figure 3.3(c)) et le reste jusqu’à ce que les deux bords
entrent en collision et forment un GB. La situation est différente de celle en régime limité par la
diffusion pour laquelle la densité est appauvrie au niveau des creux. Dans ce cas, les particules déjà
déposées sur le substrat mais pas encore incorporées dans le solide sont effectivement statiques.
En effet, ces particules ne peuvent pas diffuser car tous les sites voisins sont occupés.

Il n’y a aucune corrélation de l’attachement des particules par l’intermédiaire du champ de
concentration car la concentration est strictement constante partout C̃ = 1. La Figure 3.2(c)
montre aussi des bords avec des pics, mais ils sont plus fins et plus petits que ceux du régime
limité par la diffusion de la Figure 3.2(b).

Le GB est formé à Dt ∼ 5.102 avec une rugosité non négligeable. La relaxation du GB
entraîne son lissage. Ce processus est plus rapide que celui reporté en Figure 3.2(b). En effet, à
Dt = 2× 104, le GB en Figure 3.2(c) est beaucoup moins rugueux que celui observé en Figure
3.2(b). Pourtant les uniques paramètres qui influencent la relaxation, Q et ε, sont les mêmes.
Puisque les conditions physiques sont les mêmes, la différence doit résider dans la configuration
initiale pour la relaxation du GB, c’est-à-dire la configuration du GB juste après la collision.

3.2.1.4 Influence de la diffusion D

En annexe B.2, nous montrons que des morphologies similaires sont obtenues si le rapport
Q/D décroît d’un facteur 102, c’est-à-dire pour une diffusivité de particules 102 fois plus grande.
Un remplissage complet du substrat est aussi atteint aux temps courts pour une valeur de flux
élevée, ce qui correspond au même rapport F/Q = 102 de la Figure 3.2(c).

3.2.2 Description des 4 régimes observés

Dans cette section, nous allons décrire les caractéristiques des 4 régimes observés en fonction des
différentes valeurs de flux F , à l’aide des grandeurs observables rugosité W 2, taux de remplissage
θ et temps de collision tcol.
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La Figure 3.4(a) montre l’évolution temporelle de la rugosité W des bords de domaines pour
Q/D = 10−1, ε = 0.1, une séparation initiale entre les deux cristaux d0 = 32a, une longueur
L = 512a, et plusieurs valeurs de F/D. Pour chaque colonne positionnée en x, le contact s’effectue
en un temps t

(local)
col (x). Les barres horizontales sur la Fig. 3.4(a) au-dessus des pics de rugosité

donnent l’intervalle de temps minimum dans lequel est compris l’ensemble des valeurs de t
(local)
col (x).

Avant cet intervalle, on a deux interfaces distinctes. Après cet intervalle, on a un GB. La Fig.
3.4(b) montre le taux de remplissage θ comme une fonction du temps pour un même jeu de
paramètres.

Figure 3.4: (a) Évolution de la rugosité pour une valeur constante Q/D = 10−1 et pour différentes
valeurs de flux. Des lignes pointillées avec une valeur de pente indiquée sont dessinées à titre de
comparaison. Elles correspondent à des lois de puissance dont l’exposant est égal à la pente. Les
barres horizontales à W/a � 1 donnent une indication du temps de collision des domaines (valeur
moyenne plus ou moins un écart-type σ). (b) Évolution du taux de remplissage θ pour le même
jeu de paramètres, avec le même code couleur que (a).

3.2.2.1 Description générale

Dans chacun des cas, W augmente initialement pendant la croissance, ce qui est attendu pour
tout processus de rugosification cinétique démarrant avec une configuration parfaitement plate
[17], [106]. Dans la plupart des cas, W atteint une valeur maximale en un temps proche du temps
moyen de collision. La seule exception à cette observation est le cas avec la plus faible valeur de
flux (F/D = 10−6), pour laquelle W semble saturer après l’augmentation initiale.

Dans un deuxième temps, après le pic, la rugosité du GB évolue plus lentement. Ces processus
de lissage ou de rugosification qui ont lieu après la formation du GB dépendent de la configuration
des interfaces au moment de la collision. Cette configuration dépend particulièrement du flux
de particules lors de la croissance. Cependant, une fois que les interfaces se sont touchées, le
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flux n’a plus aucun impact sur la relaxation du GB et seuls les paramètres Q et ε influencent la
dynamique.

Nous allons désormais analyser la croissance dans chacun des régimes de F .

3.2.2.2 Faibles flux, régimes proches de l’équilibre

Le flux le plus faible de la Fig. 3.4(a), F/D = 10−6, correspond aux instantanés de la Fig.
3.2(a). Le graphique montre que la croissance initiale proche de l’équilibre a lieu avec une rugosité
W ∼ t1/4.

C’est le scaling attendu pour le processus de rugosification décrit par l’équation d’Edwards-
Wilkinson (EW) [107] à l’échelle mésoscopique, pour laquelle la tension de surface et le bruit blanc
sont les mécanismes principaux. Cette équation décrit la rugosification des interfaces à l’équilibre
et proche de l’équilibre, ou loin de l’équilibre quand les symétries du système interdisent les
non-linéarités telles que celles qui mènent à l’équation de Kardar-Parisi-Zhang [108]. Le système
en croissance est hors-équilibre mais comme le flux est suffisamment faible, la dynamique se
retrouve être proche de l’équilibre.

Après la formation du GB , la rugosité ne varie presque plus, ce qui indique que le GB atteint
un régime stationnaire que nous détaillerons au paragraphe 3.2.4.

3.2.2.3 Valeurs intermédiaires de flux, instabilité de Mullins-Sekerka

Pour les valeurs intermédiaires de flux, F/D = 10−3, la Fig. 3.4(a) montre que l’augmentation
initiale de la rugosité est plus rapide qu’une loi linéaire. Cela correspond aux images de la Fig.
3.2(b). L’augmentation explosive des fluctuations de position des interfaces confirme la croissance
instable qui est attendue dans un régime limité par la diffusion. Il convient de noter que lorsqu’une
instabilité linéaire apparaît dans les perturbations d’un état stationnaire (i.e. indépendant du
temps), la croissance de ces fluctuations est exponentielle. Cependant, si l’instabilité se greffe ici
sur un état qui n’est pas stationnaire la croissance n’est plus forcément exponentielle.

Quand les interfaces entrent en collision, W diminue. Après avoir atteint une valeur minimale,
W augmente à nouveau. W converge vers sa valeur stationnaire aux temps longs. Dans des études
précédentes, des résultats similaires ont été obtenus comme une conséquence d’un changement
bref de cinétique de rugosification, où un lissage rapide de l’interface était alors suivi d’une lente
rugosification [109], [110].

3.2.2.4 Grand flux, fort taux de remplissage θ (et C̃ proche de 1)

Pour les plus grandes valeurs de flux (F/D = 10), la rugosité en Fig. 3.4(a) augmente
approximativement en W ∼ t1/2. L’image correspondante est en Fig. 3.2(c). La même tendance
serait obtenue avec une déposition aléatoire complètement décorrélée aux deux interfaces [17].

La Fig. 3.4(b) montre que le taux de couverture du substrat atteint sa valeur 1 bien avant le
temps de collision (θ = 1 ⇒ C̃ = 1), au contraire des autres régimes pour lesquels θ = 1 n’est
atteint qu’aux temps proches de la collision. Cela confirme que les deux domaines grandissent avec
un remplissage complet du substrat. La rugosité maximale W est également atteinte au moment
où les interfaces entrent en collision, et la diminution qui s’ensuit est associée à la formation du
GB.

Pour F/D > 10−1, on observe une rupture de pente dans la diminution de la rugosité après le
pic. La décroissance s’effectue d’abord rapidement, puis plus lentement (la rupture de pente est
aussi observée pour F/D = 10−2 et 10−3, mais la transition est moins marquée). La première
diminution rapide est identifiée à un phénomène rapporté dans un travail précédent de F. Reis et
O. Pierre-Louis [69] dans lequel la rugosité diminue pendant la collision de deux interfaces se
propageant à vitesse constante, indépendemment du détail de leurs interactions à courte portée.

Après que le GB est formé, la rugosité atteint une valeur minimale qui est plus petite que
les valeurs obtenues en croissance proche de l’équilibre et dans le régime limité par la diffusion.
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De plus, cette valeur minimum est atteinte en un temps plus court comparé aux autres régimes,
comme il l’était précédemment suggéré par les images des Figs. 3.2(a)-(c).

3.2.2.5 Régimes hybrides

Entre les trois régimes décrits ci-dessus, l’évolution de la rugosité montre des caractéristiques
hybrides, intermédiaires. Sur la Fig. 3.4(a), le tracé pour des valeurs F/D = 10−5 et 10−4

représente la transition entre le régime limité par l’attachement et le régime limité par la diffusion,
alors que celui avec les valeurs F/D = 10−2 et 10−1 représente la transition à partir de ce dernier
jusqu’au régime de haut C̃.

Nous avons ainsi retrouvé 4 régimes de croissance différents pour la rugosité des domaines
avant la collision.

3.2.3 Temps moyen de collision

Une caractéristique commune des régimes limités par l’attachement et par la diffusion est que
le temps de formation d’un GB (i.e. le temps moyen de collision) est grossièrement proportionnel
à l’inverse du flux : tcol ∼ 1/F .

La distance initiale entre les domaines et les mécanismes de diffusion de particules, d’attache-
ment et de détachement déterminent la morphologie des interfaces. Cependant, dans le régime de
haut C̃ (obtenu avec les flux les plus élevés), le temps de formation des joints de grains dépend
du taux Q mais pas du flux F . Cela peut se remarquer en comparant les données pour F/D = 1
et F/D = 10 en Fig. 3.4(a).

Après que le substrat est rempli θ = 1 dans les régimes à grand F , le taux d’attachement Q
contrôle la propagation des interfaces. Le taux de diffusion a un impact négligeable parce que les
positions des particules sont fixées. Ainsi le temps de collision est inversement proportionnel à Q
et proportionnel à la largeur initiale du substrat 2d0 : tcol ≈ d0/Q. Les détails sont discutés dans
le paragraphe 4.2.2 et sur la Figure 4.3.

Suite à la jonction des deux domaines, la rugosité relaxe vers un état d’équilibre.

3.2.4 Évolution vers le régime stationnaire

À temps long, il n’y a plus de sites libres pour la déposition. Il n’y a donc plus de croissance.
Or, c’est la croissance qui maintient le système hors de l’équilibre. En l’absence de croissance,
le système peut relaxer vers l’équilibre, et le régime stationnaire atteint aux temps longs peut
être relié à un état d’équilibre thermodynamique, pour lequel la rugosité dépend uniquement des
paramètres qui ne sont pas des coefficients cinétiques, comme ε et L.

Ainsi, pour toutes les valeurs de taux du modèle (F , D, and Q) et de d0, on s’attend à ce
que la rugosité converge vers la même valeur stationnaire pour des temps suffisamment longs.
Dépendant de la rugosité maximale atteinte avant la collision des interfaces, W peut augmenter
ou diminuer après la formation du GB. Par exemple, la Fig. 3.4(a) montre que W augmente vers
une valeur stationnaire pour F/D = 10−5 et F/D = 10−4 indépendante de F .

Les 4 régimes de F ont donc été décrits du début de la croissance des domaines jusqu’à la
relaxation du GB. Mais les autres paramètres du modèle influencent également la dynamique.

3.2.5 Dépendance des autres paramètres du modèle

Dans cette section, nous analysons l’influence de l’attachement cinétique Q, du coefficient de
diffusion D, de la distance initiale entre les deux domaines 2d0 et de ε.

3.2.5.1 Influence du coefficient d’attachement cinétique Q

Des résultats similaires sont obtenus pour des autres valeurs de Q/D. La Fig. 3.5(a) montre
l’évolution de la rugosité pour différentes valeurs du flux F avec Q/D = 103, c’est-à-dire pour des



42 CHAPITRE 3. SIMULATIONS DE MONTE-CARLO CINÉTIQUE (KMC)

systèmes avec une diffusion de surface très lente en comparaison avec les taux d’attachement et
de détachement. Les autres paramètres demeurent les mêmes comme sur la Fig. 3.4(a). L’échelle
de temps du processus de diffusion est aussi utilisée en échelle des abscisses.

La principale différence ici est que le régime instable limité par la diffusion couvre une zone
plus étendue de F , car la diffusion plus lente favorise l’appauvrissement en particules au niveau des
creux des interfaces. Pour cette raison, le régime limité par la cinétique d’attachement-détachement
n’est pas observé en Fig. 3.5(a).

Cependant, pour F/D > 103 (et donc à F/Q > 10), les caractéristiques d’un régime à fort
taux de couverture C̃ sont encore observées : les interfaces suivent initialement une loi d’échelle
de croissance décorrélée en régime RD en W ∼ t1/2, tandis que θ et donc C̃ ont déjà atteint une
valeur 1, comme montré en Fig. 3.5(b). Finalement, après la formation du GB, W atteint une
valeur minimale plus petite que celle atteinte dans les autres régimes, et cela a lieu en un temps
plus court.

3.2.5.2 Influence du coefficient de diffusion D

Un coefficient de diffusion largement supérieur au taux d’attachement facilite la redistribution
des particules sur le substrat et permet l’observation du régime limité par l’attachement, mais
bloque l’établissement du régime limité par la diffusion qui donne lieu à l’instabilité de Mullins et
Sekerka avec une croissance de W plus rapide que linéaire en temps.

Cependant, pour les plus grandes valeurs de flux, les caractéristiques d’un régime à fort C̃
sont toujours observées parce que la diffusion n’est pas efficace dans ce cas. Ceci est illustré dans
l’annexe B.4 pour Q/D = 10−3 où le régime limité par la diffusion n’est pas observé.

3.2.5.3 Influence de la distance initiale entre les domaines 2d0

Des variations de d0 affectent la zone de transition entre le régime limité par la diffusion et le
régime limité par l’attachement, mais ne changent pas les caractéristiques à flux très élevé. Pour
des plus petites valeurs de 2d0, une croissance instable n’a pas forcément le temps de se développer,
donnant place à une rugosification EW des interfaces pour des flux légèrement supérieurs (voir
annexe B.3 de l’appendice). Au contraire, pour des d0 plus grands, le régime instable s’étend
à des plus petites valeurs de flux parce que l’instabilité se développe avant que les interfaces
n’entrent en collision.

3.2.5.4 Influence de ε

Le taux de détachement est relié à la probabilité de détachement εn. Des variations de ε
entraînent certains changements notables dans l’évolution de la rugosité, ce qui est montré en Fig.
3.5(c) pour ε = 0.05, les autres paramètres restant les mêmes qu’en Fig. 3.4(a).

L’influence de ce paramètre ε sera discutée plus en détails dans la section 4.3.6, à l’aide d’un
modèle microscopique de relaxation du GB développé en section 4.3.2.

3.2.6 Diagramme de phase de la croissance des domaines

À partir de nos simulations, nous identifions 4 régimes de croissance précédant le début de
leur collision. Le régime limité par l’attachement et proche de l’équilibre sont caractérisés par des
pentes de tangente de la rugosité proches de 1/4, c’est-à-dire proches des valeurs du régime EW.
Le régime instable (limité par la diffusion) est caractérisé par des pentes supérieures à 1 pour des
temps antérieurs au maximum de rugosité W . Finalement, le régime à très grand flux (ou régime
de croissance aléatoire) est caractérisé par des pentes proches de 1/2. Les autres comportements
sont considérés comme des régimes de transition.

La Fig. 3.6 montre le diagramme de phase obtenu avec les critères énoncés ci-dessus pour une
valeur de ε = 0.1 et des séparations initiales 2d0 = 32a et 64a. Pour les matériaux 2D comme le
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Figure 3.5: (a), (c) Évolution de la rugosité pour Q/D constant et pour différente valeurs de
F . Les lignes pointillées avec une valeur de pente indiquée sont dessinées à titre de comparaison
avec les pentes des tangentes des autres courbes. Les barres horizontales à W/a � 1 donnent
une indication du temps de collision des domaines (valeur moyenne plus ou moins un écart-type
σ). (b) Évolution du taux de remplissage θ pour le même jeu de paramètres, avec le même code
couleur que (a).

graphène ou les dichalcogénures de métaux, la paramètre du réseau est a ∼ 0.3 nm. Ces valeurs
correspondent à des distances d0 ∼ 10–20 nm.

Pour des cinétiques d’attachement-détachement très lentes par rapport à la diffusion (très
petites valeurs de Q/D), le régime de croissance instable n’est pas observé parce que les particules
mobiles sont uniformément distribuées sur le substrat. La croissance instable est typiquement
observée pour F/Q � 0.1 (pour éviter la croissance en régime RD), F/D � 10−3 (pour éviter
la déposition très lente, qui favorise la croissance proche de l’équilibre), et Q/D � 1 (pour les
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Figure 3.6: Régimes de croissance de domaines atomiques en fonction du paramètre d’attachement
cinétique pour ε = 0.1 et deux valeurs de largeur initales l = 2d0.

cinétiques d’interfaces rapides comparé à la diffusion).
Cependant, ces conditions changent avec la largeur 2d0 ou avec ε. Pour d0 plus larges,

l’instabilité a plus de temps pour se développer avant la collision, et donc elle peut être observée
pour des valeurs plus faibles de F/D. Comme ε diminue, le détachement de particules devient
plus lent, ce qui favorise aussi la formation d’instabilités. Ainsi, le régime instable peut aussi être
observé pour des valeurs plus faibles de F/D.

Le régime de fort C̃ est plus robuste face aux changements de paramètres physiques ou
chimiques. Il apparaît pour des valeurs typiques de l’ordre de F/Q � 10, condition pour laquelle
le substrat est presque entièrement rempli avant l’attachement d’une unique couche de particules
de chaque côté. Le coefficient de diffusion D n’est pas important dans ce régime parce que les
particules déposées sur le substrat ne peuvent pas se déplacer sur les sites occupés par les plus
proches voisins.

3.3 Conclusion

Nous avons développé un modèle de simulations KMC pour décrire la croissance de deux
cristaux bidimensionnels ainsi que la formation d’un joint de grains après qu’ils sont entrés en
contact. Les ingrédients physiques (déposition, diffusion, attachement/détachement des particules)
sont les mêmes que ceux du modèle de Langevin développé au Chapitre 2.

La rugosité des bords de domaines évolue de manière non monotone à l’exception des cas à
très faible flux de déposition F . Pour les autres cas à flux plus élevé, un pic de rugosité est atteint
avant la collision entre les deux domaines, suivi d’une relaxation du GB formé vers sa rugosité
d’équilibre.

Les trois régimes de croissance observés en Figure 2.7 sont retrouvés, et les simulations KMC
indiquent la présence d’un régime additionnel sur la Figure 3.6 lorsque le taux de déposition
est suffisamment grand pour recouvrir complètement le substrat avant même la croissance du
matériau 2D. Dans ce quatrième régime, la rugosité suit un comportement de déposition aléatoire
(RD). Ce régime est caractérisé par un plus faible minimum de rugosité après la collision atteint
en un temps plus court que pour les autres régimes.

Notre modèle présente certaines limites, notamment le fait que l’attachement des particules
mobiles est restreint au site supérieur de chaque colonne x. Nous avons remarqué que cela mène
à des motifs instables qui semblent différents de ceux observés en expérience. Si cette restriction
d’attachement est abandonnée, l’agrégation de particules mobiles sur les côtés des interfaces
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rugueuses peut mener à la formation de surplombs.
Dans le chapitre suivant, nous allons comparer quantitativement les deux approches dévelop-

pées dans les chapitres 2 et 3, et développer un deuxième modèle de Langevin pour décrire la
relaxation des GBs.
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modèles de Langevin et KMC
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Chapitre 4

Comparaison des résultats entre les
modèles de Langevin et KMC

Nous avons développé deux modèles de croissance de domaines cristallins bidimensionnels : un
modèle de Langevin et un modèle sur réseau intégré par un algorithme KMC. Dans ce chapitre,
nous allons comparer quantitativement les deux modèles précédents avant, pendant et après la
collision. Dans le modèle de Langevin précédemment développé, les interfaces ne se touchent
jamais réellement (effet Zénon), ce qui permet de continuer à décrire la dynamique après la
collision.

Bien que son comportement qualitatif soit en assez bon accord avec les simulations KMC,
cette description ne prend pas en compte le cutoff microscopique imposé par la taille atomique,
et ne permet pas de décrire quantitativement la dynamique après la collision. Nous allons donc
développer un deuxième modèle de Langevin spécifique pour décrire la relaxation des GBs et
obtenir une estimation de la valeur minimale de la rugosité ainsi que du temps auquel elle est
atteinte.

4.1 Avant la collision, régime EW de faible taux de couverture C̃

Dans le régime de faible C̃, la loi d’échelle d’EW est observée dans les simulations KMC. La
rigidité d’une ligne 1D, définie par l’Eq. (2.7), s’écrit avec la condition SOS [8]

γ̃ =
kBTa‖
2a2⊥

(
exp[J/4kBT ]− exp[−J/4kBT ]

)2
, (4.1)

où le pas du réseau est noté a‖ suivant la direction x des bords de domaines et a⊥ suivant la
direction normale y. Dans cette section, nous considérons désormais a‖ = a⊥ = a = Ω1/2 = 1.
Avec l’Eq. (3.2), nous pouvons réécrire la rigidité comme

γ̃ =
kBT

2Ω1/2

(
ε−1/4 − ε1/4

)2
. (4.2)

À partir de l’Eq. (3.2), nous pouvons réécrire le taux de détachement comme

Qεn = Q exp[−nJ/kBT ]. (4.3)

Rappelant que le taux d’attachement est Q, nous retrouvons l’habituel modèle SOS de lien cassé
(bond-breaking model) et son mapping direct avec le modèle d’Ising [8], [104] avec un lien d’énergie
J et une concentration d’équilibre

ceq = exp[−2J/kBT ] = ε2 . (4.4)

De plus, la constante cinétique d’attachement-détachement est [104]

ν = Q. (4.5)

D’après les équations (2.61) et (4.2), nous obtenons une expression pour la rugosité dans le
régime d’EW :

W 2
Σ =

4

π1/2

ε

ε−1/4 − ε1/4
(Qt)1/2 . (4.6)
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Figure 4.1: Évaluation du préfacteur pour la loi d’échelle en EW pour la rugosité. Dans tous les
cas, ε = 0.1 et L = 512. Les autres paramètres sont (F/D, ν/D, d0) = (4× 10−10, 4× 10−4, 64)
carrés bleus ; (4 × 10−9, 4 × 10−3, 32) courbe rouge ; (4 × 10−10, 4 × 10−3, 32) courbe verte ;
(4× 10−9, 4× 10−3, 64) courbe orange ; (4× 10−10, 4× 10−3, 64) courbe rose.

Cette expression est valide dans la limite h̄
(0)
0 Q/D � 1, ce qui est vérifié dans les simulations

KMC.
Sur la Figure 4.1, le rapport W 2

Σ/(Qt)1/2 atteint 0.12 ± 0.02 pour une large gamme de
paramètres. D’après l’équation (4.6) avec ε = 10−1, nous obtenons W 2

Σ/(Qt)1/2 ≈ 0.18. Ici, les
prédictions donnent le bon ordre de grandeur, mais ne permettent pas un accord quantitatif
précis. Ces différences entre les simulations de KMC et les prédictions du modèle de Langevin
pourraient être dues aux imprécisions dans l’estimation de la rigidité de ligne. Nous faisons appel
à sa valeur à l’équilibre de l’équation (4.2) dans des conditions hors-équilibre. Une étude plus
précise de ces déviations devrait être basée sur une modélisation microscopique de la cinétique de
formation de la rugosité hors-équilibre.

4.2 Avant la collision, régime de fort taux de couverture C̃ = 1

Lorsque le taux de couverture atteint la valeur C̃ = 1, tous les sites initialement vacants sont
occupés par des particules mobiles, il n’est donc plus possible de déposer des particules. Le flux
de déposition de particules n’a alors plus d’impact sur la croissance. Par contre, la cinétique
d’attachement Q joue alors un rôle prépondérant. Les particules s’accrochent alors de manière
complètement aléatoire, à un taux Q sur une des colonnes du cristal. Le modèle qui suit vise à
retrouver la loi d’échelle de croissance de rugosité en régime RD [17].

4.2.1 Modèle RD pour l’attachement de particules

Afin de retrouver la loi qui régit l’évolution de la rigidité dans le régime RD, nous considérons
d’abord le modèle de probabilité avec un temps discrétisé de la Figure 4.2.

En régime RD, les particules sont déposées avec une probabilité p sur un site donné (une
colonne donnée). Dans cette section, nous avons toujours a‖ = a⊥ = Ω1/2 = 1. La probabilité
qu’une colonne donnée soit de hauteur h après N tentatives de déposition est

P (h,N) =

(
N

h

)
ph(1− p)N−h =

N !

h!(N − h)!
ph(1− p)N−h. (4.7)

En notant Δt le pas de temps entre deux essais, on a t = NΔt. La hauteur moyenne et la rugosité
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Figure 4.2: Modèle de déposition de particules par colonne. Nous considérons la 4ème colonne de
hauteur h. Pour chaque intervalle de temps Δt, une particule peut être déposée au sommet de la
colonne avec une probabilité p.

sont données par

〈h〉 =
h=N∑
h=0

hP (h,N) = Np (4.8)

W 2 = 〈h2〉 − 〈h〉2 =
h=N∑
h=0

h2P (h,N)− (Np)2 = Np(1− p). (4.9)

En utilisant la formule de Stirling pour n � 1

n! ∼ (2πn)1/2
(
n

e

)n

, (4.10)

la probabilité s’écrit

P (h,N) =

(
N

2πh(N − h)

)1/2

exp

{
(N ln

N

e
− h ln

h

ep
− (N − h) ln

N − h

e(1− p)
)

}
. (4.11)

Nous écrivons le développement limité de P (h,N) autour de sa valeur moyenne en h = 〈h〉+ δh
avec δh � 〈h〉. Au second ordre en δh, nous avons

N ln
N

e
− h ln

h

ep
− (N − h) ln

N − h

e(1− p)
≈ − δh2

2Np(1− p)
= − (h−Np)2

2Np(1− p)
. (4.12)

Ainsi, nous pouvons écrire

P (h,N) =

(
1

2πNp(1− p)

)1/2

exp

{
− (h−Np)2

2Np(1− p)

}
(4.13)

qui est une distribution gaussienne décrivant la diffusion à 1D. La probabilité peut se réécrire,

P (h,N) = P (h, t) =

(
1

4πDt

)1/2

exp

{
−(h− vt)2

4Dt

}
(4.14)

Par identification, nous avons

v =
p

Δt
(4.15)

D =
p(1− p)

2Δt
. (4.16)
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D’après l’Eq. (4.15), pour une vitesse v finie, nous avons nécessairement p → 0 lorsque Δt → 0.
Ainsi

D −→
Δt→0

v

2
. (4.17)

La position moyenne de l’interface est donnée par le point < h >=
∫
hP (h, t)dh >, et la rugosité

de l’interface est donnée par la variance de la distribution P (h, t) :

〈h〉 = vt (4.18)

W 2 = 2Dt, (4.19)

en accord avec la solution du modèle discret des Eqs. (4.8) et (4.9). À partir de (4.19), nous
déduisons que

W (t) ∼ t1/2, (4.20)

avec un exposant β = 1/2 caractéristique du régime RD.

4.2.2 Pendant la collision, chute brutale de la rugosité

Dans la suite, nous reprenons explicitement les expressions en fonction de a‖ et a⊥. Nous
supposons que le régime de croissance avant collision correspond à un régime RD, avec un taux
d’attachement des particules sur une colonne de l’interface

Q =
p

Δt
. (4.21)

La vitesse de déplacement des deux interfaces est égale à v = a⊥Q et dans la limite Δt → 0 la
constante de diffusion est D = a2⊥Q/2. Pour une distance initiale d0 entre les interfaces, l’Eq.
(4.18) suggère un temps de collision moyen

tcol = d0/(a⊥Q). (4.22)

La Figure 4.3 montre le temps de collision adimensionné à l’échelle de l’attachement Q divisé
par l’écart initial adimensionné entre les domaines 2d0/a⊥, en fonction du rapport εF/D. Les
données sont obtenues pour différentes valeurs du taux de détachement 0.01 ≤ ε ≤ 0.1 et pour
différentes longueurs d’interfaces L. Ce graphique montre que (l = 2d0)

tcol ∼ 0.5
l/a⊥
Q

∼ d0/a⊥
Q

, (4.23)

indépendamment des autres paramètres du modèle, ce qui est bien prévu par l’Eq. (4.22).
D’après l’Eq. (4.16), D → p/2Δt = Q/2. En utilisant cette relation, l’Eq. (4.19) donne la

rugosité juste avant la collision

W 2
bc = a2⊥Qt0 = a⊥d0. (4.24)

Précédemment discuté en Ref. [69], la collision réduit le carré de la rugosité d’un facteur 2, ce qui
entraîne une rugosité immédiatement après collision égale à

W 2
1ac = W 2

1bc/2 = a⊥d0/2. (4.25)

4.3 Après la collision, relaxation du joint de grains

L’objectif de cette section est d’établir un modèle de Langevin pour la relaxation du GB vers
l’équilibre. Puisque la couche est complètement remplie, les deux interfaces sont en contact direct.
Les seuls déplacements possibles de l’interface sont alors dus au détachement d’une particule
depuis un bord pour se réattacher sur le bord opposé. Nous obtenons une dynamique de relaxation
du GB depuis son maximum de rugosité puis une croissance de type EW. De ce modèle, nous
extrayons les grandeurs W (Lang)

min et t(Lang)
min qui représentent la rugosité minimale du GB, et le temps

auquel cette rugosité est atteinte. Nous les comparons ensuite avec les résultats des simulations
KMC.
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Figure 4.3: Résultat des simulations KMC. Temps de collision adimensionné à l’échelle de
l’attachement des particules en fonction du rapport flux-diffusion F/D. Les différentes largeurs
l = 2d0 sont différenciées par couleurs.

Figure 4.4: Énergie d’une interface. (a) L’énergie de l’interface simple est la somme des énergies
de liens cassés pour chaque particule J/2. (b) Dû à la présence des deux cristaux, l’énergie de
l’interface double est la même qu’en (a) en considérant la substitution J/2 → J .

4.3.1 Rugosité à l’équilibre

La rugosité à l’équilibre d’une ligne est donnée par la formule (2.48) où Γ est proportionnel à
la rigidité γ̃ de ligne d’une interface 1D. Chaque bord de domaine a une énergie proportionnelle
au nombre de liens atomiques cassés sur toute sa longueur (voir Figure 4.4(a)). Lorsque les deux
bords de domaines se sont rejoints, la ligne qui les sépare a une énergie donnée par le nombre de
liens cassés sur chaque bord.

Ainsi, s’il n’y pas de site vacant ou de particule mobile entre les deux bords, l’énergie de la
double ligne est deux fois supérieure à l’énergie d’une seule ligne pour une configuration donnée
(voir Figure 4.4(b)). Cependant, l’entropie de la ligne est la même, car le nombre de configurations
possibles de la ligne n’est pas changé. Par conséquent, il est possible d’obtenir l’énergie libre du
GB à partir de la formule connue pour l’énergie libre d’une ligne en multipliant simplement le
coût énergétique de chaque longueur atomique élémentaire a‖ par 2.

Puisque deux liens atomiques cassés sont formés par la rupture d’un lien d’énergie J , le coût
d’un lien cassé est J/2. Nous devons ainsi compter une énergie 2× J/2 = J pour chaque élément
de longueur atomique a‖. Finalement, l’énergie libre du joint de grains s’obtient simplement par
la substitution J/2 → J . C’est aussi le cas pour la rigidité qui en découle par l’Eq. (2.7).
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Figure 4.5: Rugosité du joint de grains en fonction de sa longueur. En bleu, valeurs tirées des
simulations KMC pour L=128, 256 et 512. En orange, valeurs théoriques de l’Eq. (4.27).

La rigidité du GB γ̃GB est alors obtenue à partir de l’Eq. (4.2) en effectuant la substitution
J → 2J pour tenir compte des liens cassés de chaque côté du GB (Figure 4.4) :

γ̃GB =
kBTa‖
2a2⊥

(
ε−1/2 − ε1/2

)2
. (4.26)

En utilisant l’Eq. (2.48), la rugosité du GB à l’équilibre s’écrit ainsi :

〈W 2〉GB,eq =
ΩL

12ΓGB
, (4.27)

avec

ΓGB =
Ωγ̃GB

kBT
=

a2‖
(
1− ε

)2
2a⊥ε

. (4.28)

La Figure 4.5 recense les valeurs de rugosité d’équilibre du GB obtenues à temps long à partir
des simulations KMC pour différentes valeurs de longueurs d’interfaces L, pour ε = 0.1, c’est-à-dire
pour ΓGB = 4.05. Les résultats des simulations KMC sont représentés par les croix bleues, et
la loi donnée par l’Eq. (4.27) est tracée en orange. Nous obtenons un bon accord quantitatif
de l’Eq. (4.27) avec les simulations KMC. Pour L = 512, nous obtenons une valeur numérique
W 2

GB,eq = 10.53, ce qui correspond à une rugosité de WGB,eq = 3.25. Cela est compatible avec les
valeurs d’équilibre des Figures 3.4 et B.3. Pour L = 256, la valeur WGB,eq = 2.30 est compatible
avec le résultat de la Figure B.2. Ces résultats confirment que l’approximation que nous avons
faite en négligeant les particules détachées intercalées dans le GB entre les deux matériaux 2D
pour calculer la tension de ligne est quantitativement satisfaisante dans les régimes étudiés.

4.3.2 Modèle de Langevin de relaxation du GB vers l’équilibre

Dans cette section, nous écrivons un modèle de Langevin pour la dynamique des interfaces
après collision. La dynamique est décrite par les taux

R+(n) =
Q

2
ε4−n (4.29)

R−(n) =
Q

2
εn (4.30)

où n est le nombre initial de liens entre l’atome et le cristal du bas. R+(n) est la fréquence de
passage des atomes du cristal du haut vers les atomes du cristal du bas, et R−(n) est le taux du
processus inverse. Par exemple pour le cas de R−(n), les particules du cristal du bas se détachent
avec une fréquence Qεn et forment une particule mobile entre les deux interfaces. Cette particule
se ré-attache avec une probabilité 1/2 sur le cristal du bas ou sur celui du haut, d’où l’Eq. (4.30).

Dans la limite où ε � 1, les taux R± sont petits devant Q. Par conséquent, le temps de
ré-attachement ∼ 1/Q est beaucoup plus petit que les autres temps impliqués dans la dynamique
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du GB. C’est pour cette raison que nous ne considérons pas de façon explicite les configurations
avec une particule détachée entre les deux grains.

Sachant que les marches atomiques sont des systèmes 1D avec des interactions à courte portée,
elles se trouvent toujours dans un état de phase à haute température, c’est-à-dire qu’elles sont
toujours rugueuses, elles ne peuvent pas transiter vers un état à basse température présentant des
facettes [8]. Ainsi, leur concentration de kinks est finie. À basse température (ce qui correspond à
ε � 1), leur concentration est faible et donnée par le poids de Boltzmann d’excitations d’énergie
Ek indépendantes entre elles. Cela aboutit à pk = 2 exp[−Ek/kBT ], où Ek = J est l’énergie d’un
kink, et le facteur 2 vient de l’existence de deux types de kinks (kinks montants et descendants
suivant la direction +x).

En utilisant un modèle avec des kinks de hauteur arbitraire (non restreintes à ±1), mais en
imposant la contrainte SOS qui empêche la possibilité d’avoir des surplombs comme dans les
modélisations de KMC, la densité de kinks à l’équilibre s’écrit [8] 1

pk = 〈|n|〉 = 2e−J/kBT

1− e−2J/kBT
=

2ε

1− ε2
. (4.31)

De plus, la fréquence de saut d’un kink vers la gauche ou vers la droite est identique, et on définit
R(2) = R+(2) = R−(2). Ainsi, la constante de diffusion d’un kink est donné par

Dk = a2‖R(2) = a2‖
Q

2
ε2, (4.32)

où nous désignons explicitement le paramètre de réseau le long de x par a‖. À partir de la relation
d’Einstein qui relie la mobilité au coefficient de diffusion, la mobilité d’un kink est

Mk =
Dk

kBT
=

a2‖R(2)

kBT
. (4.33)

Ainsi la vitesse d’un kink est

vk = −Mkμk

a‖
, (4.34)

où μk est le potentiel chimique d’un kink.
Nous voulons désormais faire un lien avec les observables macroscopiques. La position ma-

croscopique de l’interface est hGB(x, t). La vitesse macroscopique de l’interface est reliée aux
quantités microscopiques vk et pk par [111], [112]

∂thGB = a⊥
〈vk〉m
a‖

pk, (4.35)

où hGB est la position du GB, a⊥ est la distance atomique le long de y et la notation 〈·〉m
représente une moyenne mésoscopique pour les kinks au voisinage de la coordonnée macroscopique
y.

Nous avons défini la vitesse moyenne d’avancée d’un kink 〈vk〉m. Il convient de noter que
l’Eq.(4.35) a été dérivée dans Refs. [111], [112] pour les modèles de croissance sous l’hypothèse
que tous les kinks ont la même vitesse, mais sa signification n’est pas évidente à l’équilibre, où
le mouvement des kinks est diffusif. Cependant, dans la théorie d’Einstein en régime proche de
l’équilibre, c’est le lien habituel entre la mobilité d’un système en mouvement macroscopique sous
l’effet d’une force extérieure et sa diffusion à l’équilibre. Comme Mk ne varie pas d’un kink à
l’autre, nous avons

〈vk〉m = −Mk〈μk〉m
a‖

, (4.36)

1Nous utilisons la relation 〈|n|〉 = ∂Jxβ0 de l’Eq.10.33 de Saito [8], et ensuite Jx → J .
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et comme le potentiel chimique représente l’énergie libre gagnée par l’ajout d’une particule, nous
nous attendons à ce que le potentiel chimique microscopique d’un kink soit égal au potentiel
chimique macroscopique

〈μk〉m = μ. (4.37)

Le potentiel chimique macroscopique s’écrit

μ =
(δF/δh)

(δN/δh)
= Ωγ̃GBκ ≈ −Ωγ̃GB∂xxhGB (4.38)

où F et N sont respectivement l’énergie libre de l’interface et le nombre d’atomes du cristal
inférieur. De plus, l’aire atomique Ω obéit à la relation Ω = a‖a⊥. La rigidité du GB γ̃GB est
définie par l’Eq.(4.26).

Finalement, nous obtenons

∂thGB = −a⊥
a‖

Mkμ

a‖
pk =

R(2)pk
kBT

a⊥Ωγ̃GB∂xxhGB. (4.39)

En ajoutant une force de Langevin ηGB de moyenne nulle 〈ηGB〉 = 0, nous obtenons un modèle
d’EW

∂thGB = R(2)pka⊥ΓGB∂xxhGB + ηGB. (4.40)

Une deuxième dérivation à partir d’un modèle de réaction-diffusion réalisée en Annexe C.1 donne
un résultat très similaire.

Nous faisons alors appel au théorème de fluctuation-dissipation pour déterminer l’amplitude
de la force de Langevin à l’équilibre ηGB(x, t). Pour cela, nous écrivons d’abord l’Eq. (4.40) dans
l’espace de Fourier (x → q).

∂thq,GB = −R(2)pka⊥ΓGBq
2hq,GB + ηq,GB (4.41)

La résolution de l’Eq. (4.41) donne

hq,GB(t) = hq,GB(0)e
−bn2t/2 +

∫ t

0
dt′ηq,GB(t

′)ebn
2(t′−t)/2 (4.42)

avec

b = 2R(2)pka⊥ΓGB

(2π
L

)2
, (4.43)

et

q =
2πn

L
. (4.44)

Notez que dans les calculs qui suivent et uniquement dans cette section, le temps t = 0 correspond
au temps juste après la collision.

Nous définissons l’intensité du bruit d’équilibre Bη,q,GB par

〈ηq,GB(t)ηq′,GB(t
′)〉 = Bη,q,GB δn+n′δ(t− t′)L. (4.45)

La rugosité du GB s’écrit alors

W 2
GB =

1

L2

∑
n �=0

〈hq,GBh−q,GB〉 (4.46)

=
2

L2

∑
n>0

〈|hq(0)|2〉e−bn2t +
2

L2

∑
n>0

∫ t

0
dt′Bη,q,GB ebn

2(t′−t)L (4.47)

=
2

L2

∑
n>0

〈|hq(0)|2〉e−bn2t +
2Bη,q,GB

L

∑
n>0

1

bn2

(
1− e−bn2t

)
. (4.48)
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Pour déterminer la valeur de Bη,q,GB, nous calculons d’abord la rugosité à l’équilibre (c’est-à-
dire aux temps longs bn2t � 1, lorsque les termes exponentiels s’annulent). Ainsi, nous pouvons
écrire

W 2
GB,eq =

2Bη,q,GB

L

∑
n>0

1

bn2
=

2LBη,q,GB

2R(2)pka⊥ΓGB(2π)2

∑
n>0

1

n2
=

LBη,q,GB

24R(2)pka⊥ΓGB
. (4.49)

Nous utilisons alors le critère que la rugosité d’équilibre du GB de l’Eq. (4.49) coïncide avec celle
de l’expression (4.27). Ainsi,

Bη,q,GB = 2ΩR(2)pka⊥. (4.50)

Finalement,

W 2
GB =

2

L2

∑
n>0

〈|hq(0)|2〉e−bn2t +
ΩL

2π2ΓGB

∑
n>0

1

n2

(
1− e−bn2t

)
. (4.51)

Aux temps longs, nous retombons sur la valeur attendue de la rugosité d’équilibre (4.27). Aux
temps courts, c’est-à-dire dans la limite opposée bn2t � 1, la somme peut être approximée par
une intégrale

ΩL

2π2ΓGB

∑
n>0

1

n2

(
1− e−bn2t

)
≈ ΩL

2π2ΓGB

∫ ∞

0
dn

1

n2
(1− e−bn2t)

≈ ΩL

2π2ΓGB
(bt)1/2

∫ ∞

0
dx

1

x2
(1− e−x2

)

=
ΩL

2π2ΓGB
(bt)1/2π1/2. (4.52)

où x = bn2t. Nous pouvons ainsi réécrire l’Eq. (4.51) comme

W 2
GB =

2

L2

∑
n>0

〈|hq(0)|2〉e−bn2t +
LΩ

2πΓGB

(
bt

π

)1/2

, (4.53)

avec b défini par l’Eq. (4.43).
Le second terme de l’Eq. (4.53) est en accord avec Ref. [9] Eqs. (2.63,2.65) en substituant

(ν+ + ν−)Ωc0eq → R(2)pka⊥. En remplaçant les expressions de pk et γ̃GB par leur fonction de ε
(4.31) et (4.26), nous obtenons

W 2
GB =

2

L2

∑
n>0

〈|hq(0)|2〉e−bn2t +Ω

(
4ε4a2⊥

π(1 + ε)(1− ε)3a2‖
Qt

)1/2

. (4.54)

En omettant la relaxation initiale, nous retrouvons une relaxation du GB de type EW :

WGB ∼ (Qt)1/4 . (4.55)

À ce stade, pour déterminer complètement l’évolution de la rugosité du joint de grains après la
collision, il reste à déterminer le spectre statique de la condition initiale 〈|hq(0)|2〉 résultant de
la rugosité juste après la collision. Cette condition initiale peut être déterminée dans certains
régimes.

4.3.3 Minimum de rugosité en régime de croissance rapide C̃ = 1

Dans la limite de croissance rapide avec un C̃ = 1, nous supposons que le régime de croissance
avant collision correspond à un régime RD. La rugosité après collision est donnée par l’Eq. (4.25).
Dans le régime RD, la rugosité est totalement décorrélée. Nous pouvons donc écrire

〈hac(x)hac(x′)〉 = W 2
1aca‖ δ(x− x′), (4.56)
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ce qui se traduit dans l’espace de Fourier par

〈hac,qhac,q′〉 = a‖W 2
1ac 2πδ(q − q′) = a‖W 2

1ac Lδn+n′ , (4.57)

où q défini à l’Eq. (4.44) est en principe une variable discrète, mais nous écrivons un delta de Dirac
par analogie avec la limite continue où L est grand. En conséquence, 〈|hq(0)|2〉 = a‖W 2

1ac L =
Ωd0L/2 dans l’Eq.(4.53), ce qui conduit à

W 2
GB =

2a‖W 2
1ac

L

∑
n>0

e−bn2t +
LΩ

2πΓGB

(
bt

π

)1/2

=
2a‖W 2

1ac

L
Θ3(e

−bt) +
LΩ

2πΓGB

(
bt

π

)1/2

, (4.58)

où Θ3 est la fonction thêta de Jacobi.
Pour t � 1/b, nous avons e−bt � 1 et Θ3(e

−bt) ≈ e−bt, et

W 2
GB =

2a‖W 2
1ac

L
e−bt +

LΩ

2πΓGB

(
bt

π

)1/2

, (4.59)

c’est-à-dire la somme dominée par le mode de plus lente relaxation n = 1. Cette expression ne
mène pas nécessairement à un minimum. La condition d’existence d’un minimum de la fonction
e−x + αx1/2 est que α < 21/2e−1/2. En notant x = bt, nous obtenons la condition pour l’existence
d’un minimum

L2Ω

4π3/2W 2
1acΓGBa‖

< 21/2e−1/2 (4.60)

L < Lmax =

(
21/2e−1/2π3/2

d0a
2
‖

a⊥
(1− ε)2

ε

)1/2

. (4.61)

Dans le régime opposé où bt � 1, lorsque le temps est assez long pour que les modes de courte
longueur d’onde puissent relaxer (de sorte que la somme sur n puisse être prise jusqu’à l’infini
avec une contribution des modes non-physiques à grand n correspondant à des longueurs d’ondes
plus petites que la taille atomique qui est négligeable), nous pouvons prendre la limite continue
en n

∑
n>0

e−bn2t ≈
∫ ∞

0
dn e−bn2t =

1

2

( π
bt

)1/2
, (4.62)

à une constante additive près, liée à la précision de la limite continue au voisinage de n = 0. Cela
aboutit à

W 2
GB =

a‖W 2
ac

L

( π
bt

)1/2
+

LΩ

2πΓGB

(
bt

π

)1/2

=
a‖W 2

ac

τ1/2
+

Ωτ1/2

2πΓGB
(4.63)

où τ = L2bt/π.
Un minimum est obtenu pour τM = 2πΓGBW

2
1aca‖/Ω, ce qui aboutit à

tM =
W 2

1ac

4R(2)pka
2
⊥

=
d0

8R(2)pka⊥
. (4.64)

Notons que tM ne dépend pas de la rigidité γ̃GB.
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Ce minimum est atteint pour btM = 2π2a‖ΓGBW
2
1ac/(L

2Ω) = π2ΓGBd0/L
2 � 1 pour des

grandes valeurs de L, ce qui est cohérent avec l’hypothèse initiale bt � 1, et qui aboutit à la
condition

L > Lmin = π(ΓGBd0)
1/2 = π

( a2‖
2a⊥

(1− ε)2

ε
d0

)1/2
. (4.65)

Les expressions très similaires de Lmax de l’Eq.(4.61) et Lmin de l’Eq.(4.65) ne diffèrent que par
leurs préfacteurs qui sont très proches numériquement : π ≈ 3.14 et (8π3/e)1/4 ≈ 3.09.

La valeur de la rugosité au minimum est

W
(Lang)2
min =

2W1ac(a‖Ω)1/2

(2πΓGB)1/2
= Ω

(
d0

πΓGB

)1/2

, (4.66)

W
(Lang)
min =

[
1

π(1− ε)2

]1/4 (
2d0εa

3
⊥
)1/4

. (4.67)

Un résultat remarquable est que W
(Lang)
min ne dépend pas du coefficient cinétique R(2). La dépen-

dance de Wmin en d0 peut être expliquée par des simples arguments d’échelle [109], [110].
Finalement, le temps total t(Lang)

min auquel le minimum de rugosité est atteint est

t
(Lang)
min = t0 + tM =

d0
a⊥Q

(
1 +

1

4ε2pk

)

Qt
(Lang)
min =

2d0
2a⊥

[
1 +

(1− ε2)

8ε3

]
. (4.68)

De même que la rugosité minimum ne dépend pas des paramètres physiques décrivant la cinétique
de l’interface dans l’Eq. (4.67), nous remarquons que le temps du minimum ne dépend pas de la
rigidité de ligne. Par ailleurs, le second terme est dominant à basse température, i.e. t(Lang)

min � t0
pour ε � 1.

Pour ε � 1, la rugosité, le temps du minimum de rugosité et la valeur seuil de longueur pour
la validité de l’Eq.(4.65) suivent une loi d’échelle en d0 et ε :

W
(Lang)
min ≈ 0.75× (2d0εa3⊥)1/4 (4.69)

Qt
(Lang)
min ≈ 0.063× 2d0

a⊥ε3
(4.70)

Lmin ≈ 2.2×
(a2‖d0
a⊥ε

)1/2
. (4.71)

Ces valeurs sont comparées aux valeurs numériques des simulations KMC dans la section suivante
4.3.4.

4.3.4 Rugosité minimale des joints de grains dans les simulations KMC

Dans les simulations de croissance avec les flux de précurseurs les plus élevés (F/Q � 10),
nous mesurons la valeur minimale de rugosité obtenue durant la relaxation du GB Wmin, et le
temps auquel ce minimum est atteint tmin, puis nous les comparons avec les formules (4.69) et
(4.70) estimées à l’aide du modèle de Langevin.

La rugosité minimale Wmin ne dépend pas des autres paramètres F , Q, D, et L. Elle est
uniquement affectée par le taux de détachement ε et la largeur initiale l = 2d0. La Fig. 4.6(a)
représente Wmin/a en fonction de la variable d’échelle ε(2d0)/a, c’est-à-dire en fonction du produit
adimensionné des paramètres précédemment cités. Le temps auquel le minimum de rugosité est
atteint augmente rapidement lorsque ε diminue et les simulations deviennent plus lentes lorsque
d0 augmente. Nous considérons ainsi des intervalles restreints pour ces variables (0.05 ≤ ε ≤ 0.1
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et 16 ≤ 2d0 ≤ 64) pour obtenir des estimations précises de Wmin. L’ajustement linéaire de la Fig.
4.6(a) donne une relation

Wmin ≈ 0.87
(
2d0εa

3
)0.25

. (4.72)

Cette relation est à comparer avec l’expression (4.69) déterminée à l’aide du modèle de Langevin
de relaxation des joints de grains.

Figure 4.6: l = 2d0. (a) Rugosité minimale dans le régime de fort taux de couverture C̃ comme
une fonction de ε2d0/a. La ligne pointillée est une régression linéaire obtenue par la méthode des
moindre carrés avec une pente de 0.25. (b) Temps adimensionné auquel le minimum de rugosité est
atteint comme une fonction de 2d0/

(
aε3
)
. La ligne pointillée est une régression linéaire obtenue

par la méthode des moindre carrés avec une pente de 0.16.

L’approximation (4.69) donne un préfacteur 0.75, ce qui est proche de celui obtenu par
estimation numérique 0.87 dans l’Eq. (4.72).

L’approche de Langevin prédit également avec l’Eq. (4.68) que le minimum de rugosité est
atteint en un temps adimensionné, où le premier terme compte pour la croissance non corrélée
des bords de domaines indépendants, et le second terme compte pour la rugosification du GB
(ou lissage) après collision. Pour ε � 1, le premier terme est négligeable par rapport au second,
ce qui donne l’Eq. (4.70). Nous nous attendons à ce que ce soit une approximation raisonnable
même pour ε = 0.1, valeur qui était choisie dans la plupart des simulations. Guidé par ce résultat
analytique, la Fig. 4.6(b) représente Qtmin en fonction de 2d0/

(
aε3
)
. Un ajustement avec une

régression linéaire semble raisonnable. La pente de cette droite est 0.16, ce qui est plus grand que
la pente théorique 0.063.

De plus, la longueur d’interface utilisée L = 512 dépasse largement la valeur minimale nécessaire
pour obtenir un minimum de rugosité donnée par l’Eq. (4.65) : avec d0 = 32, Lmin = 35.76.

Comme nous avons vu que Wmin ne dépend pas de la cinétique et est prédit quantitativement
alors que tmin dépend de la cinétique et n’est pas prédit quantitativement, nous pouvons conclure
que c’est la description de la cinétique qui n’est pas quantitative dans notre modèle de Langevin.
Plus précisément, puisque tmin ≈ tM donné par l’Eq. (4.64) pour ε � 1 est sous-estimé d’un
facteur entre 2 et 3, on en déduit que la mobilité de la marche, proportionnelle au facteur R(2)pk
est surestimée par ce même facteur.

4.3.5 Transition entre le régime EW et l’équilibre

Ici, nous voulons évaluer le temps de transition entre la croissance en régime EW de la rugosité
du GB, et l’équilibre qui a lieu aux temps longs. À partir de l’Eq. (4.53), la croissance de la
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rugosité du GB dans le régime EW se lit

W 2
GB,EW = Ω

(
2R(2)pka⊥teq

πΓGB

)1/2 ΩL

12ΓGB
(4.73)

À partir de la condition W 2
GB,EW = W 2

eq à t = teq, nous obtenons une estimation du temps
nécessaire pour atteindre le régime d’équilibre

Qteq =
π

144

(
L

a

)2 1

ε2

(
1 + ε

1− ε

)
. (4.74)

Une définition alternative du temps de transition peut être donnée en considérant que le mode
le plus lent n = 1 dans l’Eq.(4.53) s’atténue suffisamment, aboutissant à bt∗eq = 1. Ces conditions
peuvent être réécrites en t∗eq = (36/π3)teq ≈ 1.16teq. Cette autre définition du temps de transition
est très similaire à celle définie par l’Eq.(4.74).

4.3.6 Influence de ε dans la relaxation du GB

Le modèle microscopique développé en section 4.3.2 nous permet de comprendre plus intuiti-
vement l’importance du paramètre ε sur la dynamique de relaxation du GB.

L’effet stabilisant pour l’instabilité de Mullins et Sekerka est proportionnel à ceqΓ. Or, d’après
l’Eq. (4.4), ceq ∼ ε2 et d’après l’Eq. (4.2), Γ ∼ ε−1/2 quand ε est petit. Ainsi, ceqΓ ∼ ε3/2, donc
l’effet stabilisant diminue pour une diminution de ε et l’instabilité est plus forte bien que la
rigidité de ligne augmente. Le régime limité par la diffusion est ainsi poussé à des plus faibles
valeurs de flux. Pour cette raison, un scaling de type EW n’est clairement observé sur la Figure
3.5(c) que pour des valeurs F/D < 10−7, contrairement au cas où ε = 0.1 sur la Fig. 3.4(a) avec
la valeur F/D = 10−6.

Pour les valeurs de F intermédiaires et élevées, les plus faibles ε aboutissent à une rugosité
qui décroît plus lentement après la formation du GB. En dépit de ces différences, le régime de
fort C̃ atteint pour les plus grandes valeurs de flux (F/D = 10) produit toujours la plus faible
rugosité du GB pendant la relaxation.

Pour F/D = 10 sur la Fig. 3.5(c), une caractéristique non triviale émerge : une deuxième
rupture de pente (ou coude) apparaît pendant la diminution de la rugosité du GB. La première
décroissance de la rugosité au moment de la collision juste après le maximum de rugosité est un
effet stochastique caractéristique de la collision d’interfaces [69]. Lors de la seconde, la rugosité
décroît par élimination des pics les plus fins du GB (rugosité à courte longueur d’onde spatiale).
Cela requiert le détachement de particules avec un seul plus proche voisin, ayant un taux de
détachement égal à Qε. La troisième relaxation du GB dépend alors du taux de détachement des
kinks avec deux voisins qui est égal à Qε2 rappelé par les Eqs. (4.29) et (4.30)). Ce taux est plus
petit que le taux d’élimination des pics par le facteur ε, ce qui explique un second coude pour la
rugosité.

Cette double rupture de pente n’apparaît que pour les plus petites valeurs de ε car les échelles
de temps des différents processus sont bien séparées : celle associée à la croissance (donnée par
Q) est plus courte que celle associée au processus de détachement d’une particule ayant un seul
voisin (donnée par Qε) qui est également plus courte que celle associée au détachement d’un kink
(donnée par Qε2).

Ces caractéristiques deviennent plus prononcées pour des plus petites valeurs de ε, comme
montré dans le paragraphe B.5.

4.4 Comparaison des diagrammes de phase

Sur tous les graphiques d’évolution temporelle de rugosité, les lignes pointillées permettent
de guider le lecteur pour les lois d’échelle avec les exposants indiqués. Si l’exposant dépasse la
valeur 2 avant le maximum pendant un intervalle de temps assez grand, le système est considéré
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comme instable. En effet, les amplitudes peuvent grandir plus rapidement que linéairement en
présence d’instabilité de Mullins-Sekerka. À l’inverse, lorsque l’exposant est proche de 1/2, nous
retrouvons une croissance proche de l’équilibre d’EW, ce qui est discuté en section 2.2.4.

Sur la Fig. 2.7, le critère simple de la valeur de l’exposant de la loi d’échelle avant le pic du
modèle de Langevin est indiqué par les triangles oranges et rouges. Ce critère mène qualitativement
aux trois mêmes régions qu’avec le critère sur l’évolution de RΣ(t) discuté en Section 2.2.6. Des
exemples de comparaison de lois d’échelles obtenus avec le modèle de Langevin sont reportés sur
la Fig. 2.6.

Figure 4.7: Diagramme de phase pour le modèle de KMC et comparaison avec le modèle de
Langevin. Les symboles représentent les régimes identifiés dans les simulations KMC. Les lignes
pointillées représentent les prédictions du modèle de Langevin de croissance (chapitre 2). Les traits
discontinus indiquent la condition F/Q = 1. (a) h0 = 32 et (b) h0 = 16. Les autres paramètres
sont ε = 10−1, L = 512. Les données des simulations KMC de ces graphiques sont tirées de
Ref. [77].

Tiré de cette classification avec les exposants, un diagramme de phase est également tracé
pour des simulations KMC avec ε = 10−1 en Figure 4.7. Les simulations KMC donnent les trois
mêmes régions que le diagramme de phase de la Figure 2.7, avec des accords qualitatifs, mais pas
très précis quantitativement.

Cependant, pour les simulations KMC, nous observons également une région différente pour le
flux élevés, ce qui correspond à une situation où presque tous les sites du substrat sont recouverts
par des atomes. Dans ce régime à F élevé, l’exposant avant le maximum est proche de 1, et la
dynamique est classifiée comme un régime de déposition aléatoire (RD) Barabasi1995, ce qui a
déjà été discuté en Sec. 2.2.2. Ce régime de fort taux de couverture est obtenu pour des valeurs
de C̃ de l’ordre de 1.

En utilisant l’expression quasi-statique de la concentration au niveau des bords de domaines
donnée par l’Eq. (2.11), nous obtenons une condition limite pour définir le régime de faible taux
de couverture C̃ = Ωc � 1, ce qui aboutit à ΩF � ν/h̄

(0)
0 (0). Cette condition est qualitativement

correcte, mais n’est pas en accord quantitatif avec la transition vers le régime de fort C̃ de la
Figure 4.7. En effet, la concentration quasi-statique ne fournit qu’une borne supérieure pour les
valeurs possibles de concentration au bord.

Une condition simple basée sur un taux de déposition par site supérieur au taux d’attachement
à l’interface F/Q < 1 montre un meilleur accord avec les simulations, suggérant comme attendu,
que de forts effets non quasi-statiques entrent en jeu lorsque la concentration n’est pas faible.
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4.5 Potentielles applications avec la croissance de matériaux 2D

Ici nous discutons les applications de la croissance dans le régime de fort C̃ pour produire des
matériaux 2D avec une faible rugosité de GB.

L’Eq. (4.67) montre que réduire la température lors de la croissance (ce qui réduit ε) est
avantageux d’un facteur ε1/4 pour obtenir une rugosité plus faible de GB. Cependant, l’Eq. (4.68)
montre que le temps pour atteindre cette rugosité minimale augmente car Q et ε diminuent d’un
facteur

(
Qε3

)−1. Ceci est montré en comparant les Figs. 3.4(a) (ε = 0.1) et 3.4(c) (ε = 0.05) avec
la Fig. B.4 de l’annexe (ε = 0.01).

Nous nous attendons donc de manière générale, à ce qu’une plus haute température soit plus
favorable pour obtenir des joints de grains plus lisses. Cela implique que ε et Q soient grands.
Cependant, la condition F/Q � 10 est également nécessaire pour permettre une croissance initiale
en régime RD au niveau des deux domaines séparés (paragraphe 3.2.6).

En suivant le raisonnement du paragraphe ci-dessus, nous supposons aussi que : la longueur
des interfaces L et la largeur initiale entre les domaines 2d0 sont ∼ 10μm. Le paramètre du
réseau (distance inter-atomique) est a ≈ 0.3 nm (qui diffère d’environ � 20% entre le graphène et
plusieurs dichalcogénures de métaux), ε = 0.1, ce qui signifie que le taux de détachement est 102

fois plus petit que le taux d’attachement à un kink.
À partir de l’Eq. (4.24), la rugosité maximale des interfaces avant collision est ∼ 40 nm. L’Eq.

(4.72) prédit que la rugosité minimale atteinte par le GB est de ∼ 2 nm, ce qui correspond à une
diminution d’un facteur ∼ 20. Le temps nécessaire pour atteindre la rugosité minimale peut être
déterminé à partir de l’Eq. (4.68) en terme de taux d’attachement : Qtmin ∼ 4× 106.

À titre de comparaison, si les conditions de croissance proche de l’équilibre sont choisies et
que le GB relaxe vers sa configuration d’équilibre, les Eqs. (4.26) et (4.27) prédisent une rugosité
du GB

Weq =

√
εaL

6

(
1

1− ε

)
. (4.75)

Avec les paramètres ci-dessus, nous obtenons Weq ∼ 7 nm, ce qui est 3.5 fois supérieur à la
rugosité minimale obtenue ci-dessus. Le temps pour atteindre la transition vers l’état d’équilibre
de la rugosité est obtenu à partir d’une cinétique EW du GB est donné par l’Eq. (4.74). Nous
obtenons Qteq ∼ 3× 109, ce qui est trois ordres de grandeurs supérieur au temps nécessaire pour
obtenir une rugosité minimale en régime de fort taux de couverture C̃.

La croissance de matériaux 2D dans ce régime pourrait donc être avantageuse : à partir
des simulations à l’échelle nanométrique et du modèle de Langevin de la section 4.3.2, nous
estimons que ces résultats peuvent être extrapolés aux cristaux à l’échelle microscopique. La
rugosité minimale du GB est atteinte en un temps plusieurs ordres de grandeurs inférieur au
temps nécessaire pour atteindre l’état d’équilibre.

4.6 Conclusion

La formule de rugosification proche de l’équilibre du modèle de Langevin de croissance nous
permet de retrouver la loi d’échelle EW des simulations KMC sans un accord quantitatif : les
préfacteurs restent cependant du même ordre de grandeur.

Un modèle RD a été écrit et a permis un accord quantitatif avec les simulations KMC pour la
valeur du temps de collision tcol. La valeur de la rugosité à l’équilibre W 2

GB,eq est en accord avec
les modèles standards de la physique statistique.

Nous avons ensuite développé un modèle de Langevin pour décrire la relaxation du GB, et
avons obtenu deux autres accords quantitatifs entre les résultats analytiques et les simulations
KMC pour la valeur du minimum de rugosité. Il manque cependant un facteur 2 ou 3 pour le
temps auquel ce minimum est atteint.

Une des limites du modèle KMC est donnée par l’attachement des particules mobiles restreint
au site supérieur de chaque colonne x dans le modèle KMC. Cependant, l’appui des modèles de
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Langevin nous laisse penser que cette limitation n’a pas d’impact important sur notre prédiction
de la rugosité minimale dans le régime de fort taux de couverture C̃.

Nous avons finalement comparé les diagrammes de phase pour les deux modèles, et avons
obtenu un accord qualitatif sans être quantitativement très précis. Les trois régimes de croissance
obtenus avec le modèle de Langevin en Figure 2.7 sont retrouvés par les simulations KMC.
Cependant, un quatrième régime à très fort flux de déposition est observé dans les simulations
KMC, et correspond à une situation où tous les sites du substrat sont recouverts par des atomes
avant même le début de la croissance du cristal. Le minimum de rugosité atteint dans ce régime à
très haut flux de déposition est plus faible et atteint en un temps plus court que pour les autres
régimes.

Les simulations KMC corroborent les modèles de Langevin pour l’existence de différents
régimes de croissance, et la présence d’un minimum de rugosité. En pratique, dans l’objectif de
minimiser l’impact des GB, ces modèles peuvent aider à déterminer les conditions de croissance
optimales pour améliorer les propriété des matériaux. Dans l’ensemble des modèles de collision
d’interfaces décrits dans cette thèse, nous n’avons pas considéré de liens atomiques entre les deux
cristaux. Un modèle prenant en compte ces liens est esquissé dans l’annexe C.2. Cependant, la
dynamique résultante reste à explorer.
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Chapitre 5

Modèle de champ de phase

Nous avons développé un modèle de champ de phase décrivant l’évolution de marches atomiques
pour décrire la croissance d’un cristal en milieu confiné.

Dans un premier temps, nous avons décrit la dynamique des marches à l’aide d’un modèle de
champ de phase élémentaire. Deux variables sont mises en jeu : une analogue à la concentration
en particules (ions ou molécules) en phase liquide θ et le paramètre d’ordre φ (ou champ de phase)
qui traduit la hauteur de l’interface perpendiculairement à l’orientation de la facette.

Les équations peuvent être dérivées à partir d’une énergie libre, en fixant un potentiel dans
lequel évolue le champ de phase. Un potentiel en double puits offre deux positions de stabilité à
φ. Une seule marche peut alors évoluer. Un potentiel sinusoïdal permet une infinité de positions
de stabilité, et permet donc à une infinité de marches de se développer [113].

Le code utilise une méthode de résolution numérique par transformée de Fourier, ce qui
implique que les conditions aux limites au bord de la boîte de simulation soient périodiques.
Or, nous voulons confiner la dynamique dans une zone de géométrie fixée qui décrit une zone
de contact entre un cristal facetté et un substrat. Nous définissons dans un premier temps une
fonction de bord où la concentration θ est fixée. Un des obstacles rencontrés est la maîtrise de la
condition obéie par les marches dans cette zone proche du contour. Deux options sont envisagées
et aboutissent à des conditions de raccordement différentes entre l’intérieur de la facette et le
bord.

Afin de modéliser la réaction du système à une force extérieure, le cristal est laissé libre de se
déplacer sur l’axe vertical. Ce mouvement est affecté par la pression de disjonction dans le film
compris entre le substrat et le cristal. Cette pression est modélisée par un potentiel répulsif. Avec
cette seule interaction, le cristal est voué à s’échapper à une distance infinie du substrat. De plus,
le cristal est soumis à une force macroscopique externe qui peut maintenir le cristal dans une
position d’équilibre quand elle s’oppose à la pression de disjonction répulsive.

Pour une force de poussée suffisamment grande, le cristal devrait se dissoudre. Cet effet est
connu sous le nom de "dissolution sous contrainte". En revanche, pour une force de poussée
assez faible, nous nous attendons à ce que le cristal soit maintenu à une distance d’équilibre
suffisamment éloignée du substrat. Lorsque le substrat a un défaut unique (une protubérance
localisée), un trou stationnaire peut alors se former à la surface du cristal sous le défaut. Notre
modélisation n’inclut pas la nucléation de nouvelles couches atomiques. Cependant, nous pouvons
rajouter les marches unes à unes pour mimer une croissance lente. Ce protocole permet d’aboutir
à un diagramme qui résume les états stationnaires qui peuvent être observés pour un défaut
unique en fonction de la sursaturation et de la force imposée.

5.1 Introduction

Dans ce chapitre, nous définissons un modèle de champ de phase qui vise à décrire la croissance
de marches atomiques sur la facette d’un cristal en solution confiné par des parois. Des expériences
d’une telle situation ont déjà été réalisées par F. Kohler, D. K. Dysthe en collaboration avec O.
Pierre-Louis [6]. Le schéma expérimental est représenté sur la Figure 5.1.

Sur la Figure 5.1(a), un cristal de NaClO3 baigne dans une solution. Un objectif de microscope
haute-résolution image la dynamique de croissance. La Figure 5.1(b) est un zoom sur le cristal vu
en coupe verticale, et la Figure 5.1(c) montre la croissance de marches atomiques au niveau de la
surface du cristal.

Plusieurs particules (impuretés de diamètre compris entre 10 et 80 nm) sont dispersées
entre le cristal et la lamelle de verre pour contrôler leur espacement ζ et pour modéliser une
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surface rugueuse. Les marches atomiques sont observées par microscopie à contraste de réflexion
interférentiel (RICM), qui utilise les interférences entre la lumière réfléchie par l’échantillon et la
lumière réfléchie par la surface de verre [114].

Figure 5.1: Dispositif expérimental utilisé dans [6]. (a) Schéma de la chambre expérimentale
avec un cristal en solution et un objectif de microscope haute résolution. (b) Coupe verticale du
cristal. (c) Zoom sur le petit encadré de la figure (b). La lumière incidente est réfléchie sur le
cristal et sur la surface du verre qui confine le cristal dans la solution. Ces deux trajets lumineux
permettent une analyse interférométrique pour mesurer la distance ζ(r) entre le cristal et le verre.
L’encadré (c) montre la propagation de deux marches atomiques à partir d’un bord de facette. Ce
qui est dénommé spacer fait référence à une impureté qui tient le cristal à distance de la surface
du verre.

La croissance du cristal marche par marche a été effectuée et représentée sur les images des
Figures 5.2 et 5.3. Les zones sombres correspondent à une distance plus faible que les zones claires
entre le cristal et le verre. Cela signifie que l’interface entre une zone sombre et une zone claire
correspond à la présence d’une marche atomique. Dans le cas de la Figure 5.2, la croissance est
réalisée avec une sursaturation1 σs = 0.051 et une distance typique avec le substrat ζ de l’ordre
de 50 nm.

Figure 5.2: Croissance d’une marche atomique. Les zones sombres correspondent à une distance
plus faible entre la surface du cristal et la surface du verre. Elles représentent ainsi une nouvelle
marche se propageant de manière isotrope sur le cristal. La sursaturation est σs = 0.051 et la
distance typique avec le substrat est ζ ≈ 50 nm. La série d’images est tirée de [6]. L’intervalle de
temps entre deux images est 0.1 s.

Pour d’autres conditions expérimentales, un front de propagation de marche atomique in-
stable a été observé et représenté sur la Figure 5.3. Les formes dendritiques observées ici sont
caractéristiques d’une instabilité de Mullins-Sekerka (Sec. 1.1.5).

1La sursaturation est définie par les auteurs des travaux [6] comme σs = (c− ceq)/ceq, avec ceq la concentration
d’équilibre en ions entre les phases liquide et solide. Cette quantité exprime l’excès de concentration en ions dans
le liquide.
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Figure 5.3: Instabilité d’une marche atomique. Les zones sombres correspondent à une distance
plus faible entre la surface du cristal et la surface du verre. Elles représentent ainsi une nouvelle
marche se propageant sur le cristal et ici, elles caractérisent la présence d’une instabilité de type
Mullins-Sekerka. La sursaturation est σs = 0.053 et la distance typique avec le substrat est ζ ≈ 22
nm. La série d’images est tirée de [6]. L’intervalle de temps entre deux images est de 0.45 s. La
flèche noire en bas à droite indique la direction spatiale de la propagation de la marche.

Nous cherchons à modéliser ce type d’expériences de croissance de cristal en solution, confiné
par une paroi. Pour cela, nous faisons appel aux modèles de champ de phase.

Dans la suite (sections 5.2 et 5.3), nous exposerons les différentes versions des modèles de
champ de phase que nous avons étudiés en incluant les ingrédients physiques de façon progressive.
Nous présentons ensuite le modèle auquel nous avons finalement abouti et les résultats associés
en section 5.4.

5.2 Construction du modèle de champ de phase

Dans cette section, nous allons définir les grandeurs pertinentes du système et établir les
équations qui gouvernent la croissance d’une marche atomique sur la facette d’un cristal plongé
dans une solution et confiné par la paroi d’un substrat.

Dans tout le chapitre, nous utilisons la notation X̃ pour faire référence à la quantité X
adimensionnée. Les quantités homogènes à des énergies surfaciques sont adimensionnées en les
divisant par la constante β fixant l’échelle en énergie. Les quantités spatiales adimensionnées
relatives aux dimensions du plan (x, y) s’expriment en unités de lφ, la longueur caractéristique de
diffusion du champ φ. Les quantités spatiales adimensionnées relatives à la dimension z transverse
au plan (x, y) s’expriment en unités de a⊥, la hauteur d’une couche atomique dans le solide. Les
quantités temporelles adimensionnées s’expriment en unités de τφ, le temps caractéristique de la
diffusion du champ de phase dans le plan (x, y).

5.2.1 Schéma du système

La situation schématisée est la suivante. Un cristal en croissance baigne dans un liquide et
est confiné par les parois d’un substrat (croissance cristalline dans un pore par exemple). Nous
définissons toutes les grandeurs importantes du problème.
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Figure 5.4: Schéma du système étudié. (a) Un cristal (bleu) baigne dans une solution (blanche).
L’ensemble est confiné par les parois d’un substrat environnant (orange). (b) La ligne pointillée
verte caractérise la position de référence du cristal notée z0. hs est la distance entre le substrat
et la base du cristal z0. Ici, le substrat est plat donc hs est constant. ζ(x, y, t) est l’écart entre
le substrat et la surface du cristal. La distance entre z0 et la surface du cristal est notée d[φ].
c(x, y, z, t) est la concentration en particules. Le taux de couverture défini par l’Eq. (5.2) est noté
θ(x, y, t).

Sur la Figure 5.4, un cristal (bleu) baigne dans une solution (blanche). L’ensemble est confiné
par les parois d’un substrat environnant (orange). Dans ce premier modèle, le cristal et le substrat
sont fixes. La position du cristal sur l’axe vertical est indiquée par la ligne pointillée verte située
à l’altitude z0. La distance entre le substrat et la base du cristal z0 est notée hs. Dans un premier
temps, hs est supposée indépendante de la position (x, y). L’épaisseur du cristal, définie comme
la distance entre z0 et la surface du cristal, est notée d[φ]. L’écart entre le substrat et la surface
du cristal en un point (x, y) et à un instant t est noté et défini par

ζ(x, y, t) = hs(x, y)− d[φ]. (5.1)

La concentration en particules est notée c(x, y, z, t), mais nous travaillerons avec la quantité
adimensionnée θ, qui est l’intégrale de la concentration c sur une colonne de surface Ω suivant la
direction z

θ(x, y, t) =

∫ hs

d[φ]
dz Ωc(x, y, z, t), (5.2)

où Ω est l’aire occupée par une particule dans une monocouche du cristal. θ est nommé taux de
couverture. Par abus de langage, nous l’appellerons parfois sursaturation. C’est donc le nombre
de particules par colonne de solution de hauteur ζ(x, y, t) et de section horizontale Ω en (x, y, t).
Les grandeurs étant définies, nous voulons désormais dériver les équations du mouvement de la
dynamique du système.

5.2.2 Dérivation des équations

Les équations de la dynamique hors-équilibre sont dérivées à partir de la fonctionnelle d’énergie
libre de Ginzburg-Landau [115]. Elle doit encoder des termes de forces motrices locales.

Une interface rugueuse est énergétiquement coûteuse. Nous ajoutons donc un terme qui vise à
lisser les interfaces, analogue à l’effet de la tension de surface (	∇φ)2. Plus l’interface est abrupte,
plus ce terme sera élevé.

De plus, le système a un nombre d’états stables fini. Chaque niveau de marche atomique est un
état stable. Par exemple, dans le cas d’une seule marche atomique, nous avons deux états stables :
une phase sur la terrasse inférieure du cristal, et une autre phase sur la terrasse supérieure, les
deux étant séparées par une marche atomique. Nous ajoutons donc un terme de potentiel f(φ)
homogène à une énergie surfacique. Sa dérivée f ′(φ) est une force surfacique qui pousse le système
à s’approcher d’un de ses états d’équilibre.
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En outre, le coefficient devant le gradient est caractéristique de la taille typique de l’interface
entre deux phases. Il est constitué d’un terme énergétique et d’une échelle d’espace. Nous le
notons ici α. Ainsi, la fonctionnelle d’énergie libre de Ginzburg-Landau s’écrit, dans sa forme la
plus simple :

F (φ, θeq) =

∫
d	x
[
α

2
(	∇φ)2 + f(φ)

]
. (5.3)

L’énergie libre écrite sous cette forme est le point de départ pour l’étude de nombreux
phénomènes modélisés par les méthodes de champs de phase. Dans notre cas, nous voulons ajouter
une condition pour l’homogénéité de la concentration. En principe, c’est la concentration qui
doit être constante à l’équilibre et pas θeq. Notre description est donc valide dans la limite ou les
variation de l’épaisseur du film liquide sont négligeables par rapport aux variations spatiales de
la concentration dans les directions x et y. Nous abandonnerons cette hypothèse forte dans la
section 5.4.4.

L’énergie libre F ne peut être minimale que lorsque le taux de couverture a atteint l’état
θ = θeq. Pour un taux de couverture hors-équilibre θ �= θeq, nous considérons une relaxation
harmonique de θ vers sa valeur d’équilibre. Dans ce cas, la fonctionnelle d’énergie libre s’exprime
alors sous la forme de l’équation 5.4 [116] :

F (φ, θ) =

∫
d	x
[
α

2
(	∇φ)2 + f(φ) +

λ

2
(θ − θeq)

2

]
, (5.4)

où λ est la constante de couplage entre le champ de phase et le champ de diffusion. À partir de
cette énergie libre, nous dérivons deux équations couplées gouvernant la dynamique de propagation
des marches. Le calcul est réalisé en Annexe D.1.1.

La première équation est tirée d’une relation flux-force de la théorie de la réponse linéaire. Elle
donne l’évolution de la position des marches représentées par le champ de phase φ. La seconde
dérive de la conservation de la masse et de la cinétique de diffusion. Elle donne l’évolution du
taux de couverture. Ces deux équations sont tirées des Eqs. (D.20) et (D.21) adimensionnées.

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + λ̃g′(φ) (θ − θeq) , (5.5)

∂t̃θ = ∇̃2(θ − θeq)− 1

2
∂t̃φ, (5.6)

où φ est le champ de phase, θ le taux de couverture, W̃ la largeur caractéristique d’une marche
atomique, f̃(φ) le potentiel dans lequel baigne le système, λ̃ est la constante de couplage entre le
champ de phase et le champ de diffusion et g(φ) une fonction de couplage (voir annexe D.1.1).

Le modèle thermodynamique dérive directement d’une énergie libre, auquel cas la fonction g′ est
la dérivée par rapport à φ du nombre de particules dans la phase solide. Mais un modèle numérique,
qui vise à reproduire les observations expérimentales, peut s’affranchir de cette contrainte. Dans
leur papier [117], les auteurs ont montré qu’un choix judicieux mais différent pour la fonction
g′ permettait de retrouver les mêmes équations que pour le modèle thermodynamique dans la
limite appelée "sharp-interface" pour laquelle W̃ → 0. En effet, ils ont montré que les équations
du modèle numérique tendent asymptotiquement vers celles du modèle thermodynamique pour
une fonction g′ vérifiant certaines conditions. Nous avons donc une liberté supplémentaire dans le
choix de g pour lequel nous nous inspirons des travaux qui ont déjà été réalisés [113], [118] : g
vérifie ∂φg(φ) = 0 et ∂φφg(φ) = 0 au niveau des minima de f̃(φ).

Le facteur 1/2 du dernier terme de l’Eq. (5.6) tient compte de la variation de φ = −1 en
φ = 1. Toutes les grandeurs portant des .̃ sont des grandeurs adimensionnées. Ces équations sont
résolues par méthode spectrale comme indiqué dans l’Annexe D.2.

5.2.3 Choix du potentiel

Nous choisissons d’abord un potentiel f̃ en double puits, donnant deux positions d’équilibre
distinctes. Numériquement, la fonction de couplage g′ peut être choisie avec une certaine liberté.
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Par simplification, elle est choisie avec une forme polynomiale similaire à celle de f̃ , de manière à
s’annuler aux minima de f̃ .

f̃(φ) =
φ4

4
− φ2

2
(5.7)

g′(φ) = (1− φ2)2 (5.8)

Ces deux fonctions sont représentées graphiquement sur la Figure 5.5.

Figure 5.5: (a) Le potentiel f̃ a une forme de double puits. Deux positions sont stables pour une
particule baignant dans ce potentiel : φ = −1 et φ = 1. (b) La fonction de couplage g′ est choisie
de manière à s’annuler au niveau des minima de f̃ .

Ce modèle aboutit à la formation de marches atomiques d’épaisseur typique W̃ . La Figure
5.6 représente la transition d’une terrasse inférieure du cristal à une terrasse supérieure et de la
marche intermédiaire d’épaisseur W̃ . Le paramètre de champ de phase φ peut être interprété
intuitivement comme un indicateur de la hauteur de la surface.

Figure 5.6: Transition entre deux terrasses séparées par une marche atomique. La marche possède
une épaisseur caractéristique W .

En l’absence de sursaturation, quand θ = θeq, le système régit par l’Eq. (5.5) relaxe vers
un état d’équilibre qui minimise l’énergie libre (5.4). Quand cette condition n’est pas vérifiée,
le système est porté hors de l’équilibre. La marche peut alors croître (θ > θeq) ou se dissoudre
(θ < θeq).

5.2.4 Condition initiale

Les marches atomiques évoluent en respectant les équations (5.5) et (5.6). Cependant, la
nucléation, c’est-à-dire la formation de nouvelles marches, n’est pas incluse dans notre modèle.
Il est donc nécessaire d’ajouter un excès de matière localisé sur la terrasse pour qu’une marche
atomique puisse se constituer et se propager. Nous choisissons un profil initial gaussien de hauteur
égale à Nstep = 2 (φ varie entre −1 et +1) et d’écart-type σ = 5

φinit(x, y) = φ0 +Nstep exp

[
− (x− L/2)2 + (y − L/2)2

2σ2

]
, (5.9)
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avec φ0 la valeur du champ de phase en absence de marche2. Ce profil est représenté sur la Figure
5.7.

Figure 5.7: État initial considéré dans les simulations. Le substrat est plat, la surface cristalline
est plate sur laquelle on dépose un îlot gaussien de nucléation d’épaisseur Nstep = 2 et de largeur
à mi-hauteur 2σ = 10, à partir duquel une marche atomique va se former.

De plus, la condition initiale pour θ est une concentration homogène θ = θinit partout dans le
système. La variable différence θ − θeq est une quantité physique importante : elle exprime la
quantité de matière susceptible de se solidifier en terme de nombre de couches cristallines. Nous
pouvons la relier à la sursaturation σs à laquelle nous faisons référence dans les Figures 5.2, 5.3
et 5.15 de la Ref. [6], par la relation

θ − θeq = θeqσs (5.10)

Lorsque θ − θeq = 1, on peut former une couche complète, θ − θeq < 1 moins d’une couche, et
θ − θeq > 1 correspond à plus d’une couche. Dans notre modèle, nous prenons sans perdre de
généralité θeq = 0. En effet ceci est équivalent à changement de variable θ − θeq → θ).

5.3 Résolution des équations

La marche se propage alors dans le système où la concentration initiale est homogène dans
l’espace et les conditions aux limites sont périodiques. Le modèle utilisé dans cette section et les
morphologies observées sont bien connus dans la littérature, voir par exemple [119]. Cependant,
la condition initiale avec une concentration initiale constante et sans source de concentration est
peu étudiée dans la littérature, voir par exemple [120] ; de plus, le cas avec un taux de couverture
supérieur à 1 est aussi peu étudié dans la littérature [8]. Pour accélérer les simulations, nous avons
systématiquement utilisé une grande valeur de la constante de couplage, λ̃ = 3, qui correspond à
une cinétique rapide de l’interface et permet de gagner du temps dans les simulations. Des études
plus précises du choix de λ̃ et de son influence sur la dynamique, peuvent être obtenues à l’aide
de limites asymptotiques appelées "sharp" ou "thin" interface [116], [117].

Suivant les valeurs des paramètres choisis, le régime observé est différent. Une croissance
d’une marche circulaire stable est observée à faible sursaturation, comme indiqué sur la Figure
5.8(a-c) pour θinit = 0.2. La Figure 5.8(d-f) correspond à l’évolution de θ au cours du temps. La
croissance du cristal nécessite un apport de particules. L’inhomogénéité marquée par la zone de
couleur verte/bleue intermédiaire entre le jaune et le violet correspond à la région dans laquelle
les particules ont été incorporées pour la croissance du cristal. Elles se transportent par diffusion.

2C’est-à-dire que φ0 = −1 pour un potentiel f en double puits et φ0 = 0 pour f sinusoïdal.
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Figure 5.8: Simulations de l’évolution temporelle du système avec les conditions initiales fixées
sur la Figure 5.7 dans une grille de taille L̃ × L̃. La marche atomique se propage de manière
isotrope. Paramètres choisis : L̃ = 400, θinit = 0.2, W̃ = 1 et λ̃ = 3. (a-c) Évolution de φ. (d-f)
Évolution de θ.

Un régime stable est également observé pour un taux de couverture supérieur à 1. La Figure
5.9 montre les résultats de simulation pour θinit = 1.3, avec la Figure 5.9(a-c) pour l’évolution
de φ, et la Figure 5.9(d-f) pour l’évolution de θ. Dans ce dernier cas, les particules abondent,
la diffusion ne limite plus l’approvisionnement de la marche, le régime est alors limité par la
cinétique d’attachement des particules [8].

Figure 5.9: Simulations de l’évolution temporelle du système avec les conditions initiales fixées
sur la Figure 5.7 dans une grille de taille L̃ × L̃. La marche atomique se propage de manière
isotrope. Paramètres choisis : L̃ = 400, θinit = 1.3, W̃ = 1 et λ̃ = 3. (a-c) Évolution de φ. (d-f)
Évolution de θ.
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A contrario, une croissance dendritique caractéristique de l’instabilité de Mullins-Sekerka est
observée pour une concentration suffisamment élevée pour ne pas être en régime proche-équilibre,
mais suffisamment faible de manière à ce que le taux de couverture θ soit inférieur à 1, et pour
que la diffusion de particules limite réellement la croissance dans les creux de la marche. Cette
dynamique est observée pour φ sur la Figure 5.10(a-c) et pour θ sur la Figure 5.10(d-f). Ces
formes rappellent celles observées dans l’expérience de [6] de la Figure 5.3.

Figure 5.10: Simulations de l’évolution temporelle du système avec les conditions initiales fixées
sur la Figure 5.7 dans une grille de taille L̃×L̃. La marche atomique se propage, formant des doigts
caractéristiques d’une instabilité de Mullins-Sekerka. Paramètres choisis : L̃ = 400, θinit = 0.7,
W̃ = 1 et λ̃ = 3. (a-c) Évolution de φ. (d-f) Évolution de θ.

Les équations étant résolues par méthode spectrale (voir Annexe D.2), les conditions aux
limites sont périodiques. Une partie du cristal sortant d’un côté de la boîte de simulation émerge
naturellement du côté opposé. Le nombre total de particules dans le cristal et la solution est
conservé. Le caractère périodique de la boîte de simulation est observé explicitement sur la Figure
5.11.

Figure 5.11: Simulations de l’évolution temporelle du système dans les mêmes conditions que
ceux de la simulation de la Figure 5.10, avec un site de nucléation déplacé de 100 unités vers la
gauche sur l’axe des abscisses x. La même instabilité est observée. Cette figure met en avant la
présence de conditions aux limites périodiques intrinsèque à la méthode de résolution numérique
choisie (espace de Fourier).

Afin de décrire des systèmes expérimentaux correspondant à une facette de taille finie dans le
cadre de cette méthode spectrale, nous devons modifier le modèle.
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5.3.1 Smoothed Boundary Method (SBM)

Pour résoudre une équation aux dérivées partielles dans un domaine de forme arbitraire, des
méthodes ont été développées en incluant ce domaine dans un domaine plus grand (un rectangle)
dans lequel les méthodes spectrales de Fourier peuvent être utilisées. La fonction à résoudre ψ
doit être étendue en une fonction ψ̃ qui est égale à ψ partout dans le domaine intérieur [121]-[123]
et qui atteint des valeurs choisies en dehors de ce domaine tout en étant C∞. Ces méthodes,
connues sous le nom de Smoothed Boundary Method (SBM), ont été développées initialement
pour conserver l’efficacité des méthodes spectrales dans le cas de géométries de contours complexes
ou mobiles, pour lesquelles les méthodes de résolution par éléments finis étaient préférées. Une
méthode de ce type avait été utilisée antérieurement à ces travaux pour résoudre des champs de
concentrations entre des marches atomiques [113].

Les méthodes SBM ont été employées pour des systèmes contraints par des géométries décrites
par un paramètre de domaine avec une condition aux limites 0 flux imposée aux interfaces. Dans
le cas de [124], la technique SBM est utilisée pour résoudre des équations de type Allen-Cahn.
Une dérivation systématique est proposée pour inclure ce paramètre de domaine (analogue à un
champ de phase) dans les équations à résoudre.

Dans notre cas, la géométrie rectangulaire choisie est propice à une résolution par méthode
spectrale, mais nous cherchons à nous affranchir des conditions aux limites périodiques. Pour
cela nous utilisons une méthode du même type que les méthodes SBM et celle de Pierre-Louis
[113] pour fixer une condition aux limites respectant deux objectifs. Premièrement, la facette, qui
correspond à la zone de contact entre le cristal et le substrat, est entouré d’un environnement
extérieur (soluté par exemple) qui tient le rôle d’un réservoir de particules. Nous voulons donc
apporter cet élément dans le modèle en ajoutant une concentration constante en particules sur
le bord de facette. Deuxièmement, il faut a priori prendre en compte l’interaction physique des
marches atomiques avec les bords de facette.

5.3.2 Fonction de bord

Nous définissons une fonction de bord B(x, y) qui a pour objectif de confiner la dynamique
à l’intérieur de la boîte de simulation, qui est alors assimilable à une facette du cristal. Nous
choisissons la forme carrée pour optimiser la taille de la facette avec des conditions aux limites
périodiques3 :

Bcarre(x, y) = A(x) +A(y)−A(x)A(y), (5.11)

avec

A(x) =

[
1 + exp

(
− L

πws
sin
(π
L

(
x+

wBC

2

)))]−1

+

[
1 + exp

(
L

πws

[
sin
(π
L

(
x+

wBC

2

))− sin
(πwBC

2L

)])]−1

− 1. (5.12)

La fonction de bord est construite à partir d’une fonction A périodique de période 2L. En
effet, A(x + 2L) = A(x). Cette fonction est représentée sur la Figure 5.12, avec le détail des
paramètres.

3Ici, le choix a été fait de prendre une fonction périodique pour B, ce qui permet de s’assurer que toutes les
dérivées sont continues au bord du domaine d’intégration numérique. Cependant, la fonction choisie a une période
2L au lieu d’une période L, et la Figure 5.12 suggère que la fonction est "quasiment" périodique de période L. Les
simulations ne semblent toutefois pas être affectées par cette non-périodicité.



76 CHAPITRE 5. MODÈLE DE CHAMP DE PHASE

Figure 5.12: (a) Représentation de A(x) sur une largeur 2L̃. A(x) est périodique de période 2L̃.
(b) Représentation de la fonction de bordure périodique B(x, y) dans l’espace sur une zone de
taille 3L̃× 3L̃. L’ordonnée z représente la valeur prise par la fonction B en ses coordonnées (x, y).
La fonction est représentée ici pour une grille de taille 108 × 108. Les paramètres choisis sont
L̃ = 108, w̃BC = 8, paramètre contrôlant la pente de A′(x) : w̃s = 0.2.

5.3.3 Modification des équations

Nous modifions les équations en ajoutant cette fonction de bord. Les termes en bleu tiennent
compte de cette fonction :

∂t̃φ = W̃ 2∇2φ− f̃ ′(φ) + λ̃
(
1−B(x, y)

)
g′(φ)(θ − θeq) (5.13)

∂t̃θ = ∇̃2θ +
1

2
∂t̃φ −B(x, y)(θ − θBC)τ̃ , (5.14)

où τ̃ =
τφ
τBC

, avec τBC le temps caractéristique nécessaire à ce que la concentration dans la bordure
atteigne la valeur θBC fixée par le réservoir extérieur, dans la région où la fonction B ne s’annule
pas. De plus, τφ est le temps caractéristique d’évolution du champ de phase.

Le dernier terme de la seconde équation est un terme source de concentration dans les bords
du système. Nous prévoyons que la valeur de θ au bord de la facette atteigne la valeur θBC

rapidement à chaque variation du champ de phase, donc τ̃ doit être supérieur à 1. De plus,
l’Eq. (5.13) implique que le champ de phase φ n’est plus couplé au champ de concentration et
relaxe donc vers une configuration d’équilibre quand B=1. La fonction B permet de contourner le
problème des limites non périodiques tout en continuant d’utiliser les opérations de transformées
de Fourier pour la rapidité de compilation. Une deuxième possibilité envisagée est de supprimer
également l’effet du potentiel dans la bordure. Cela se traduit par :

∂t̃φ = W̃ 2∇̃2φ−
[
f̃ ′(φ)− λ̃(θ − θeq)g

′(φ)
](
1−B(x, y)

)
, (5.15)

∂t̃θ = ∇̃2θ +
1

2
∂t̃φ −B(x, y)(θ − θBC)τ̃ . (5.16)

Dans ce cas, le champ de phase φ obéit à une équation de diffusion simple dans la zone de bord
avec B=1. Le champ de phase relaxe alors vers une fonction harmonique obéissant à l’équation
de Laplace Δφ = 0 dans la zone du bord, et qui doit se raccorder à la valeur de φ au bord de la
facette.

Les différences entre les modèles (5.13-5.14) et (5.15-5.16) résident dans le raccordement des
marches au niveau des bords. Cependant, nous n’avons pas observé de différence importante dans
la dynamique des marches en utilisant les équations (5.13) et (5.15), ce qui nous laisse penser
que nous pouvons utiliser indifféremment les deux équations différentes. Nous discuterons avec
plus de détails la différence entre ces deux systèmes d’équations dans les sections 5.3.6 et 5.3.7.
Finalement, il est important de noter que l’introduction des termes liés à la fonction B dans les
Eqs. (5.14) et (5.16) brise la conservation de la masse. Ce caractère non-conservé de la dynamique
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est dû au réservoir de particules considéré à l’extérieur de la zone de contact entre le cristal et le
substrat.

5.3.4 Résolution des équations modifiées

L’ensemble des images de simulations des Figures 5.13 et 5.14 provient d’une résolution
du système d’équations (5.13-5.14). Les Figures 5.13 et 5.14 sont réalisées respectivement avec
θinit = 0.7 et θinit = 1.3.

Figure 5.13: Simulations de l’évolution temporelle du système dans les mêmes conditions que
ceux de la simulation de la Figure 5.10, mais cette fois en tenant compte de la fonction de bord B.
La même instabilité est observée avec la formation de dentrites. Une accélération de la croissance
du cristal se produit au niveau des bords de facette. Paramètres choisis : L̃ = 400, w̃BC = 8,
w̃s = 0.2, θBC = θinit = 0.7, W̃ = 1 et λ̃ = 3.

Figure 5.14: Simulations de l’évolution temporelle du système dans les mêmes conditions que
ceux de la simulation de la Figure 5.9, en tenant compte cette fois de la fonction de bord B. La
même croissance isotrope est observée jusqu’à contact avec le bord de facette. L’accélération de la
croissance du cristal au niveau des bords de facette n’est pas observée car l’apport de particules
dans la solution est plus important que l’apport par les bords de facette. Paramètres choisis :
L̃ = 400, w̃BC = 8, w̃s = 0.2, θBC = θinit = 1.3, W̃ = 1 et λ̃ = 3.

Une similarité a été observée pour les dynamiques avec et sans fonction de bord, lorsque la
marche est éloignée des bords de facette. La marche ne sort pas de la facette au contact des bords.
De plus, au niveau des bords, une différence importante a été observée dans le cas de la Figure
5.13, avec l’accélération de la croissance due à la présence d’une concentration en particules
plus élevée. La même accélération n’est pas observée sur la Figure 5.14 car la concentration au
bord n’est pas plus élevée qu’au cœur de facette. Cette différence de comportement : instabilité
et croissance accélérée sur les bords pour les taux de couverture θ < 1 (Figure 5.13), et sans
instabilité ni accélération sur les bords pour les taux de couverture θ > 1 (Figure 5.14) est
également observée dans les expériences de [6] comme on peut le voir sur les Figures 5.15 et 5.2.
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Figure 5.15: Croissance d’une marche atomique. Les zones sombres correspondent à une distance
plus faible entre la surface du cristal et la surface du verre. Elles représentent ainsi une nouvelle
marche se propageant de manière isotrope sur le cristal. La sursaturation est σs = 0.051 et la
distance typique avec le substrat est estimée à ζ ≈ 30 nm. La série d’images est tirée de [6].
L’intervalle de temps entre deux images est de l’ordre de 0.6 s.

5.3.5 Croissance de plusieurs marches, modification du potentiel

Dans les expériences, plusieurs marches atomiques croissent simultanément comme le montre
la Figure 5.16, tirée du même article [6]. Nous cherchons à inclure cette possibilité dans notre
modèle.

Figure 5.16: Reconstruction de la hauteur locale du cristal dans l’expérience de la Figure 5.1.
Deux marches atomiques se propagent simultanément. Les flèches rouges indiquent la direction
de croissance des marches [6].

Pour cela, nous modifions le potentiel en double puits en un potentiel sinusoïdal défini par
l’équation (5.17). Chacun des minima est ajusté sur une valeur entière de φ comme indiqué sur la
Figure 5.17(a). Ils représentent les différentes positions d’équilibre du système, c’est-à-dire les
hauteurs de marche.

f̃(φ) = − 1

2π
cos(2πφ) (5.17)

g′(φ) = 1− cos(2πφ) (5.18)
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Figure 5.17: (a) Potentiel sinusoïdal pour f̃ . Chaque creux est un point d’équilibre du système
baignant dans ce potentiel. (b) La fonction g est choisie de manière à ce que g′ et g′′ s’annulent
pour les minima de f̃ .

Les simulations sont réalisées avec ce nouveau potentiel, et une condition initiale gaussienne
définie par l’Eq. (5.9) d’une hauteur Nstep = 5 (c’est-à-dire que la protubérance initiale à une
hauteur de 5 marches). Une telle condition initiale est artificielle et ne correspond a priori pas
à une configuration physique attendue dans la plupart des expériences. Cependant, elle peut
correspondre au collage d’une nano-particule. Ce mode de croissance par collage de particules
cristallines ou amorphes, a par exemple déjà été observé dans le cas de la croissance de la Calcite
(Refs. [125]-[127])

Deux choix de paramètres sont respectivement utilisés : θinit = θBC = 0.7 sur les Figures
5.18(a-c) et θinit = θBC = 1.3 sur les Figures 5.19(a-c) pour une condition initiale décentrée. Les
Figures 5.18(d-f) et 5.19(d-f) représentent l’évolution du profil du taux de couverture θ. Les
dynamiques obtenues sont assez différentes par rapport au cas à une seule marche, le régime de
croissance dendritique notamment n’est plus observé. L’accélération de la dynamique au niveau
des contours est observée dans les deux cas, contrairement au cas avec un potentiel en double
puits et θinit = 1.3 sur la Figure 5.14.

Figure 5.18: Propagation de marches atomiques. Condition initiale gaussienne de hauteur 5
décalée de 30 unités vers le haut et 10 unités vers la gauche. La zone d’impact de la fonction de
bord carrée est représentée en pointillés blancs. Paramètres choisis : L̃ = 108, w̃BC = 8, w̃s = 0.2,
θinit = θBC = 0.7, W̃ = 1 et λ̃ = 3. (a-c) Évolution de φ. La barre de couleur indique la hauteur de
chaque marche. (d-f) Évolution de θ. La barre de couleur indique la valeur du taux de couverture.



80 CHAPITRE 5. MODÈLE DE CHAMP DE PHASE

Figure 5.19: Propagation de marches atomiques. Condition initiale gaussienne de hauteur 5
décalée de 30 unités vers le haut et 10 unités vers la gauche. La zone d’impact de la fonction de
bord carrée est représentée en pointillés blancs. Paramètres choisis : L̃ = 108, w̃BC = 8, w̃s = 0.2,
θinit = θBC = 1.3, W̃ = 1 et λ̃ = 3. (a-c) Évolution de φ. La barre de couleur indique la hauteur de
chaque marche. (d-f) Évolution de θ. La barre de couleur indique la valeur du taux de couverture.

Les résultats des simulations des Figures 5.18(a-c) et 5.19(a-c) mènent toutes les deux à la
formation d’une cavité (trou) au centre de la facette. Ce phénomène à été observé expérimenta-
lement [128]. Avant de poursuivre le développement du modèle, nous cherchons maintenant à
mieux comprendre les différences entre les dynamiques résultant des deux systèmes d’équations
présentés dans la section 5.3.3.

5.3.6 Choix du système d’équations modifiées

Deux choix de modification des équations ont été proposés en Sec. 5.3.3. Les dynamiques au
cœur de la facette sont sensiblement les mêmes. Les différences notables se retrouvent dans la
zone de bord de facette. Nous pouvons nous référer à la Figure 5.20 pour les comparaisons des
deux systèmes d’équation.
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Figure 5.20: Propagation de 3 marches. Condition initiale gaussienne de hauteur 3 décalée de 35
unités vers le haut et vers la gauche. La barre de couleur indique le numéro de chaque marche.
Paramètres choisis : L̃ = 108, w̃BC = 8, w̃s = 0.2, θinit = θBC = 0.7, W̃ = 1 et λ̃ = 3. (a-c)
Résolution des équations (5.13) et (5.14). (d-f) Résolution des équations (5.15) et (5.16). (g-i)
Différence d’image entre les 2 modèles.

D’un côté la solution numérique des Eqs. (5.13-5.14) donne une présence de plusieurs marches
dans le bord, ce qui se voit sur les Figures 5.20(a-c). De l’autre côté avec les Eqs. (5.15-5.16), une
seule marche très diffuse se propage bien au-delà des bords de facette et rejoint le côté opposé
par condition aux limites périodiques, ce qui s’observe sur les Figures 5.20(d-f). La différence
entre les deux solutions s’observe sur les Figures 5.20(g-i).

En zoomant au niveau du contour, comme nous pouvons le voir sur la Figure 5.21, la différence
majeure se retrouve dans les conditions de raccordement. En régime stationnaire, θ = θeq, ∂tφ = 0
et l’Eq. (5.13) se transforme en

W̃ 2∇̃2φ+ f̃ ′(φ) = 0, (5.19)

à la fois au cœur et sur le bord de facette. Les marches n’ont pas d’orientation définie a priori.
Cependant, dans ces configurations, une marche arrive tangentiellement à la bordure, où elle n’est
plus couplée au champ de concentration θ. La suivante se retrouve dans la même configuration et
s’aligne avec la précédente. Ainsi, nous observons un paquet de plusieurs marches alignées les
unes aux autres et tangentielles avec la bordure. De l’autre, θ = θeq, ∂tφ = 0 et l’Eq. (5.15) se
transforme en

W̃ 2∇̃2φ+ f̃ ′(φ) = 0 au cœur de la facette ; B = 0 (5.20)

∇̃2φ = 0 sur le bord de facette ; B = 1 (5.21)
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Ainsi, la marche devrait être clairement définie au cœur de la facette mais diffuse et donc plus
large sur le bord.

La Figure 5.21(a) représente l’évolution d’une marche près de la bordure en régime de
croissance proche équilibre par résolution de l’Eq. (5.13). La Figure 5.21(b) est la résolution de
l’Eq. (5.15). Sur la Figure 5.21(c), chaque pixel a une intensité calculée par la différence entre les
deux premières images (a)-(b), et la Figure (d) est un zoom ×16 de la zone en haut à gauche de
l’écran.

Cette image s’interprète de la manière suivante : dans les régions blanches, la dynamique est
similaire dans les deux cas ; dans les régions bleues, φ de l’Eq. (5.15) s’étend plus largement ;
dans les régions rouges, φ de l’Eq. (5.13) domine. Ainsi, nous remarquons que la marche est
plus efficacement repoussée dans le cas dans le cas (5.13). La marche est alors plus fine et plus
droite (épaisseur W ), tandis que dans l’autre cas, la marche est plus diffuse et donc plus large.
Nous pouvons même voir par la légère teinte bleutée dans les coins supérieur droit et inférieur
gauche de la Figure 5.21(c) que la marche du modèle (5.15-5.16) s’étend bien au-delà de la zone
de bordure et qu’elle rejoint les autres côtés par condition aux limites périodiques.

Figure 5.21: Raccordement des marches au bord en régime de croissance lente. (a) Résolution dans
le cas des Eqs. (5.13) et (5.14). (b) Résolution dans le cas des Eqs. (5.15) et (5.16). (c) Différence
entre les deux premières images : (a) - (b). (d) Zoom ×16 sur la zone de bord. Propagation de
marches atomiques. Condition initiale gaussienne de hauteur 1 décalée de 40 unités vers le haut et
la gauche. Paramètres choisis : L̃ = 108, w̃BC = 8, w̃s = 0.2, θinit = θBC = 0.2, W̃ = 1 et λ̃ = 3.

Le raccordement avec les marches se repoussant entre elles semble être plus proche des
observations expérimentales de bord de facette cristalline [2], [129]. Il est établi que les marches
atomiques se repoussent entre elles. Cependant, cette répulsion effective n’est pas bien comprise
ni contrôlée dans le modèle (5.15-5.16). Nous allons donc présenter une stratégie de modélisation
différente qui incorpore un ingrédient de répulsion des marches lorsqu’elles s’approchent du bord
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de facette.

5.3.7 Modification du bord de facette

Une possibilité est de modifier l’énergie libre en ajoutant un terme γBφ dans l’énergie libre

F [φ, θ] =

∫
d	x

{
α

2
(∇φ)2 + f(φ) +

λ

2
(θ − θeq)

2 + γBφ

}
. (5.22)

Le dernier terme correspond au coût énergétique pour faire pénétrer les marches dans la zone
d’interface de la facette. La création d’une marche dans cette zone est donc coûteuse en énergie.
Un effet répulsif des marches au niveau du bord de la facette est ainsi attendu. Les équations
sont finalement modifiées en :

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + λ̃
(
1−B(x, y)

)
g′(φ)(θ − θeq)−γ̃B(x, y) (5.23)

∂t̃θ = ∇̃2θ +
1

2
∂t̃φ−B(x, y)(θ − θBC)τ̃ . (5.24)

De plus, nous privilégions le premier système d’équations (5.13) et (5.14) comme base de travail.
Au centre de la facette où B(x, y) = 0, ces équations deviennent :

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + λ̃g′(φ)(θ − θeq), (5.25)

∂t̃θ = ∇̃2θ +
1

2
∂t̃φ, (5.26)

tandis qu’au bord de la facette où B(x, y) = 1, elles deviennent :

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ)− γ̃, (5.27)

∂t̃θ = ∇̃2θ +
1

2
∂t̃φ− τ̃(θ − θBC). (5.28)

Nous avons donc pu écrire un modèle de croissance de marches atomiques sur une facette
cristalline en utilisant une méthode de résolution spectrale. Nous avons notamment contourné les
limitations relatives aux conditions aux limites périodiques. Mais dans les expériences, le cristal
est confiné par un substrat. C’est pourquoi nous voulons ajouter une interaction entre le substrat
et le cristal.

Dans la suite, nous allons d’abord compléter le modèle par l’ajout d’une interaction avec
le substrat et du mouvement global du cristal. Nous allons ensuite tester le modèle complet
numériquement.

5.4 Interaction avec le substrat

5.4.1 Nouvelles variables

Dans la première partie du chapitre, le substrat a été considéré plat sans interaction avec
le cristal. Pour un cristal en croissance dans un pore, le substrat qui correspond aux parois du
pore n’est pas nécessairement lisse. Il peut y avoir des impuretés ou des défauts de conception à
sa surface comme dans les expériences de la Ref. [6]. De plus, le cristal ressent une interaction
répulsive de la part du substrat, principalement dû à la pression de disjonction du film mince
entre les deux. L’objectif du prochain paragraphe est de tenir compte à la fois de cette nouvelle
interaction, du mouvement global du cristal et d’un substrat non plan. Les nouvelles grandeurs
mises en jeu sont définies sur le schéma de la Figure 5.22.
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Figure 5.22: Schéma du système et définition des grandeurs. Le cristal est représenté en bleu, la
solution en blanc et le substrat en orange. La ligne pointillée verte est fixée en z0 = 0 dans le
référentiel de l’expérience, quelle que soit la position du cristal. La ligne pointillée rouge permet
de définir la position du cristal (c’est-à-dire d’un point fixé par exemple à un atome du cristal)
par rapport à l’origine z0 = 0. Elle est associée à la coordonnée zc(t). La grandeur d[φ(x, y, t)]
représente la hauteur des marches atomiques en un point (x, y). La concentration en particules
est notée c(x, y, z, t). La hauteur du substrat notée hs(x, y) donne la distance entre la coordonnée
z0 et le substrat. Elle peut varier dans l’espace, mais est constante dans le temps car le substrat
est considéré immobile dans le référentiel de l’expérience. La distance entre le cristal et le substrat
est notée ζ(x, y, t).

Sur le schéma 5.22, le cristal, la solution et le substrat sont représentés respectivement en
bleu, en blanc et en orange. La ligne pointillée verte est fixée en z0 = 0 dans le référentiel de
l’expérience, quelle que soit la position du cristal. La ligne pointillée rouge est fixée au cristal.
Afin de prendre en compte la possibilité de mouvement de translation global du réseau cristallin
selon l’axe z, nous définissons la coordonnée zc(t). Elle donne la position du cristal par rapport à
l’origine de la ligne pointillée verte z0 = 0. La valeur négative de zc sur le schéma indique que le
cristal s’est fait repoussé à une distance plus éloignée du substrat (par rapport à la coordonnée
initiale zc = 0). La grandeur d[φ(x, y, t)] représente la hauteur des marches atomiques en un
point (x, y, t) dans le référentiel du cristal. La concentration en particules dans le film liquide
est notée c(x, y, z, t). La hauteur du substrat notée hs(x, y) dépend des coordonnées d’espace x
et y. Cependant, hs ne dépend pas du temps : le substrat est immobile dans le référentiel de
l’expérience. Enfin, la distance entre le cristal et le substrat est notée

ζ(x, y, t) = hs(x, y)− zc(t)− d[φ(x, y, t)]. (5.29)

L’approximation d[φ] ≈ a⊥φ est conservée de sorte que ζ(x, y, t) ≈ hs(x, y)− zc(t)− a⊥φ(x, y, t).
La dérivation des équations est réalisée dans l’annexe D.1.2. Un bref développement des

étapes importantes est rappelé ici. Nous rappelons que le taux de couverture θ est le nombre de
couches supplémentaires qui seraient occupées par le solide si toute la concentration c(x, y, z, t)
était incorporée dans le solide. Nous définissons c̄ comme la concentration volumique moyenne de
particules sur l’axe z :

θ =

∫ hs

zc+d[φ]
dzΩc(x, y, z) = ζΩ c(x, y), (5.30)

avec

c(x, y) =
1

ζ

∫ hs

zc+d[φ]
dz c(x, y, z). (5.31)

La surface moléculaire des particules dans une couche solide est notée Ω. La nouvelle variable qui
traduit la concentration en particules est notée C et définie par

C = θ
a⊥
ζ

= Ωa⊥c. (5.32)
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où a⊥ est la hauteur d’une couche atomique dans le solide et a⊥Ω est le volume atomique dans le
solide. Avec cette définition, C est la fraction de l’épaisseur de fluide qui serait occupée par le
solide si toute la concentration c(x, y, z, t) était incorporée dans le solide. C est donc une quantité
adimensionnée.

5.4.2 Nouvelles équations dynamiques

La dérivation des équations est réalisée dans l’annexe D.1.2. Ce calcul est directement inspiré
des modèles développés dans la thèse de Luca Gagliardi [120], et récapitulé en Annexe D.1.2. La
nouveauté essentielle apportée ici est la présence de marches atomiques. Les équations sont tirées
de (D.75), (D.76) et (D.77), auxquelles nous avons rajouté le terme d’énergie γ définie par l’Eq.
(5.22) ainsi que la fonction de bordure B(x, y) avec la même procédure qu’en section 5.3.3. La
dynamique est maintenant gouvernée par le système d’équations adimensionnées

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + g′(φ)
[
λ̃(1−B) (C − Ceq) + ∂ζ̃Ũ

]− γ̃B (5.33)

∂t̃C = ∂t̃z̃c
C

ζ̃
− ∂t̃φ

ζ̃

[
1− C

]
+
[
Δ̃C + 	̃∇(ln ζ̃) · 	̃∇C

]
−B(C − CBC)τ̃ (5.34)

∂t̃z̃c =
1

ν̃

[ ∫
d	̃x ∂ζ̃Ũ + F̃cz

]
, (5.35)

où W̃ est la largeur caractéristique d’une marche atomique, f̃(φ) le potentiel dans lequel baigne
le système, λ̃ est la constante de couplage entre le champ de phase et le champ de diffusion, g′(φ)
est la fonction de couplage définie par l’Eq. (5.18), ν̃ est un temps adimensionné qui rend compte
de la dissipation associée aux flux hydrodynamiques créés par les changement de l’épaisseur ζ
du film liquide [120], Ũ est le potentiel d’interaction entre le cristal et le substrat, CBC est la
concentration fixée sur les bords par le réservoir de particules extérieur.

Ces trois équations dictent la nouvelle dynamique de croissance du cristal confiné représenté
sur la Figure 5.22. Dans un premier temps, nous considérons que le cristal est fixé sur l’axe z,
c’est-à-dire que la hauteur zc(t) = 0, ∀t. Ainsi, sa dérivée temporelle ∂tzc = ucz s’annule également.
La dynamique est alors restreinte aux équations (5.36) et (5.37) :

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + g′(φ)
[
λ̃(1−B) (C − Ceq) + ∂ζ̃Ũ

]− γ̃B (5.36)

∂t̃C = −∂t̃φ

ζ̃

[
1− C

]
+
[
Δ̃C + 	̃∇(ln ζ̃) · 	̃∇C

]
−B(C − CBC)τ̃ (5.37)

Les différentes étapes numériques de la résolution de ces équations sont indiquées dans
l’Annexe D.3. Dans le paragraphe suivant, nous nous intéressons précisément à un des nouveaux
termes de ces équations : le potentiel surfacique U(ζ) qui est à l’origine de la force de répulsion
entre le cristal et le substrat U ′(ζ).

5.4.3 Potentiel répulsif

Nous envisageons deux formes de potentiel de répulsion entre le cristal et le substrat pour modé-
liser l’impact de la pression de disjonction. Ces différentes formes sont représentées graphiquement
sur la Figure 5.23.
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Figure 5.23: Plusieurs formes de potentiels répulsifs. Potentiel exponentiel en bleu, Eq. (5.38).
Potentiel de Yukawa [130] en rouge. Potentiel hybride en vert, Eq. (5.41). αpot = 0.2 (vert foncé),
αpot = 1 (vert clair), λD = 5, U0/λD = 1.

5.4.3.1 Potentiel exponentiel

Des mesures expérimentales [131] ont été réalisées pour estimer la valeur de la pression de
disjonction. Un potentiel exponentiel semble raisonnable. Le potentiel de répulsion électrostatique
est un potentiel exponentiel (5.38), qui décroît sur une longueur caractéristique λD. D’après [6],
en situation expérimentale λD ∈ [0.1, 3] nm.

U(ζ) = U0 exp(−ζ/λD) ⇒ U ′(ζ) = −U0

λD
exp(−ζ/λD), (5.38)

où λD est la longueur de Debye. C’est la distance caractéristique d’atténuation de l’interaction
électrostatique. C’est la distance typique au-delà de laquelle le potentiel ne se fait plus ressentir.

Cependant, le potentiel exponentiel de l’Eq. (5.38) mène à une force finie quand ζ = 0. Afin
de garantir la non-pénétration du cristal et du substrat, nous avons introduit artificiellement une
répulsion divergente à courte distance.

5.4.3.2 Potentiel hybride : exponentiel + Yukawa

Dans les simulations, nous préférons prendre un potentiel combiné entre une répulsion
exponentielle et une répulsion divergente à courte distance, de manière à ce qu’il n’y ait jamais
de pénétration du défaut au sein même du cristal. Nous gardons ainsi l’interaction physique à
courte ou moyenne portée, et une partie de Yukawa [130] pour avoir une répulsion très forte à
très courte portée. Le potentiel est choisi avec la forme suivante :

U(ζ) =

∫ ζ dζ ′

λD
U0

((αpotλD

ζ ′
)k

+ 1
)
exp
{
(−ζ ′/λD)

}
. (5.39)

Ainsi, la force de répulsion s’écrit

U ′(ζ) = −U0

λD

((αpotλD

ζ

)k
+ 1
)
exp{(−ζ/λD)}, (5.40)

et sa forme adimensionnée est (ζ = a⊥ζ̃)

∂ζ̃Ũ = − Ũ0a⊥
λD

((αpotλD

a⊥ζ̃

)k
+ 1
)
exp
{
(−a⊥ζ̃/λD)

}
, (5.41)

avec Ũ0 = U0/β. L’exposant k est arbitrairement choisi, mais il faut que k ne soit pas trop grand
pour éviter d’avoir des problèmes de résolution spatiale avec un potentiel trop vertical à courte
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portée. On choisit k ≥ 3 pour que la divergence pour les petites valeurs de ζ soit assez rapide,
et pour que la décroissance exponentielle soit effective rapidement après que ζ > λD. La valeur
de αpot est choisie de manière à ce que le potentiel reste exponentiel tant que ζ > λD, donc
nécessairement αpot < 1. Nous choisissons αpot = 0.2. Dans toute la suite, le potentiel choisi est
celui de l’Eq. (5.41).

5.4.3.3 Condition de non-pénétration du défaut dans le cristal

Le substrat est supposé plat, à une distance initiale h0 du cristal, avec ou sans défaut gaussien
centré de hauteur h1 :

hs(x, y) = h0 − h1 exp

{
− 1

2σ2
1

(
(x− L/2)2 + (y − L/2)2

)}
. (5.42)

Nous définissons également le rayon de courbure de la pointe du défaut R, comme l’inverse de la
courbure C

R−1 = C =
h1
σ2
1

. (5.43)

Dans la suite, les valeurs adimensionnées considérées sont h̃0 = 25, σ̃1 = 5, h̃1 = 17.5. Ainsi,
C̃ = 0.7 et R̃ = 1.4. Pour un substrat plat, il suffit de choisir h̃1 = 0. Pour une représentation
graphique de la forme du substrat, nous pourrons nous référer à la courbe orange de la Figure
5.24.

Figure 5.24: Schéma représentant un défaut au profil gaussien sur un substrat plat. La hauteur
du défaut est notée h1, la distance entre le cristal et le substrat est notée ζ, la distance minimale
entre le cristal et le défaut est notée ζ0, le rayon de courbure de la pointe du défaut est noté R.
Le repère défini ici est utilisé sur toutes les vues en coupe du chapitre (i.e. les Figures 5.26(d-f) et
leurs semblables).

D’après (5.35), pour ucz = 0

Fcz = −
∫

d	x U ′(ζ). (5.44)

Cette équation permet de déterminer le lien entre la force Fcz et la distance minimale ζ0 à
l’équilibre. On approxime la forme de la pointe du défaut par un profil parabolique,

ζ(x, y) = ζ0 +
(x2 + y2)

2R
= ζ0 +

r2

2R
, (5.45)

avec r2 = x2 + y2. Dans le cas d’un potentiel purement exponentiel, nous pouvons passer en
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coordonnées cylindriques

Fcz =

∫ ∞

0
dr 2πr

U0

λD
exp

{
− ζ0
λD

− r2

2RλD

}
(5.46)

= e−ζ0/λD
U0

λD
2π

∫ ∞

0
dr re−r2/2RλD (5.47)

= e−ζ0/λDU02πR

∫ ∞

0
du ue−u2/2 (5.48)

Fcz = e−ζ0/λD2πRU0. (5.49)

Ainsi, nous pouvons réécrire la relation entre ζ0 et Fcz

ζ0 = λD ln
U02πR

Fcz
. (5.50)

Le défaut ne peut pas traverser le cristal, ainsi ζ0 > 0, ce qui se traduit par l’inéquation (5.51)
écrite sous sa forme adimensionnée4

F̃cz < 2πR̃Ũ0. (5.51)

C’est une condition de non pénétration du défaut dans le cristal. Pour se trouver dans le régime
de potentiel exponentiel, la force de poussée ne doit pas surpasser une valeur limite qui est définie
par l’Eq. (5.51).

Il convient de noter que cette description est basée uniquement sur la partie exponentielle du
potentiel. Elle est donc indicative et non exacte pour le cas du potentiel hybride de l’Eq. (5.41)
utilisé dans les simulations.

Nous pouvons donc ajuster 2 paramètres pour un F̃cz fixé : R̃ et Ũ0. Nous avons choisi R̃ = 1.4
et Ũ0 = 1. Cependant, la morphologie du cristal est affectée par le défaut pour des valeurs de force
F̃cz ≥ 250. Dans ce cas, 2πR̃Ũ0 = 8.8 � F̃cz, et la condition (5.51) n’est pas remplie. Cela signifie
que dans ce régime, l’interaction entre le cristal et le substrat n’est pas purement exponentielle.

Par ailleurs, nous allons nous intéresser particulièrement au régime où le potentiel agit avec
une intensité similaire sur toutes les terrasses du cristal. Il faut avoir une séparation d’échelles
entre la longueur de Debye et la hauteur d’une marche

λD � a⊥. (5.52)

Pour cela, nous choisissons λD/a⊥ = 5 � 1.
Les Eqs. (5.36) et (5.37) étant décrites et tous les paramètres explicités, nous devons désormais

fixer les conditions initiales.

5.4.4 Résolution des nouvelles équations et nouvelles conditions aux limites

L’idée est de modéliser le bord d’un cristal avec les éléments du modèle à notre disposition.
Focalisons-nous d’abord sur les interactions entre les marches au niveau des bords.

5.4.4.1 Fonction de bord circulaire

Nous voulons décrire une croissance isotrope des marches atomiques. Dans ce cas, il est plus
simple de faire évoluer les marches sur un cristal isotrope. C’est pourquoi nous choisissons de
changer la fonction de bord en une fonction circulaire5 :

Bcirc(x, y) =

1 + tanh

[([
(x− L/2)2 + (y − L/2)2

]1/2 − (L− wBC)/2
)
/ws

]
2

. (5.53)

4R̃ = σ̃2
1/h̃1 = σ2

1a⊥(h1l
2
φ)

−1, Ũ0 = U0/β et F̃cz = Fcza⊥(l2φβ)
−1.

5Il serait plus conventionnel de choisir une fonction B qui soit périodique pour s’assurer que les transformées
de Fourier ne créent pas de bruit additionnel. Cependant, les simulations réalisées ici avec B constituée à partir de
fonctions tanh ne semblent pas être perturbées. La convergence de la fonction tanh vers sa limite loin du bord
semble être suffisamment rapide pour ne pas mener à des discontinuités aux limites de la boite de simulation.
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Cette fonction est représentée sur la Figure 5.25.

Figure 5.25: Représentation de la fonction de bord circulaire Bcirc dans l’espace.

De plus, les interactions entre les marches ont deux origines : une répulsion élastique et
une répulsion entropique qui présentent toutes les deux la même loi d’échelle : un potentiel
d’interaction décroissant avec le carré de l’inverse de la distance entre les marches Eint ∝ d−2 [8].
Cependant, dans ce modèle de champ de phase, l’interaction entre les marches est a contrario
exponentielle car les solutions des marches dans les équations de champ de phase décroissent
exponentiellement quand on s’écarte de la marche [132], [133]. Ceci peut être vu explicitement
dans le cas du potentiel à double puits dans l’Eq. (5.7) qui donne une solution en tanh qui tend
exponentiellement vers ±1 loin de la marche [134].

Nous ne prétendons pas modéliser de manière plus précise l’interaction entre les différentes
marches. Nos efforts sont concentrés sur la dynamique au centre de la facette, tout en prenant en
compte de manière simplifiée la physique des interactions au bord de la facette.

Dans la suite, nous imposons la présence d’un paquet de marches au voisinage du bord de la
facette, ce qui est souvent le cas au bord des facettes réelles [2]. Ainsi, la dynamique des marches
au coeur de la facette n’interagit avec la région au bord de la facette qu’à travers la première
marche de ce paquet de marches. Dans cette situation, c’est seulement la dernière marche du
paquet qui interagit directement avec le bord de la facette par le terme de répulsion γ de l’Eq.
(5.23).

5.4.4.2 Substrat plat et cristal fixé

Les simulations sont réalisées avec une condition initiale de 5 marches circulaires au-dessus
desquelles une protubérance gaussienne de 5 marches est déposée. La concentration initiale est
choisie constante partout avec une valeur C = Cinit, la condition fixée par le réservoir extérieur
correspond à la même concentration imposée dans la zone de bord CBC = Cinit, et la concentration
d’équilibre est fixée à Ceq = 0. Les Figures 5.26(a-c) montrent la facette cristalline vue de dessus
avec x en abscisse et y en ordonnée. Les Figures 5.26(d-f) représentent une vue en coupe à x = 50.
Le cristal est représenté en bleu, le substrat en orange.

Le cristal croit de manière isotrope jusqu’à atteindre un bord de facette.
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Figure 5.26: Étalement d’une protubérance gaussienne de hauteur 5, décalée de 20 unités vers le
haut, sur une terrasse de hauteur 5. Paramètres choisis : L̃ = 104, w̃BC = 4, w̃s = 0.2, W̃ = 1,
CBC = Cinit = 0.2, γ̃ = 1 et λ̃ = 3. (a-c) Évolution de φ. La coordonnée en abscisse est x, et
y est en ordonnée. La barre de couleur indique le numéro de chaque marche. (d-f) Les figures
représentent une vue en coupe à x = 50. Le sens de l’abscisse y est inversé.

Un zoom sur les 10 marches au bord en régime stationnaire est alors réalisé avec ces nouvelles
conditions et visualisé sur la Figure 5.27.

Figure 5.27: Profil de 10 marches en bord de facette pour 3 valeurs de concentration initiale.
Conditions de bords circulaires. a) Cinit = 0.002. b) Cinit = 0.02. c) Cinit = 0.2.

Nous pouvons remarquer sur la Figure 5.27 que la terrasse la plus basse se retrouve à un
niveau φ < 0. Dans la zone ou la fonction B(x, y) est non nulle, il y a un terme énergétique
γB(x, y)φ additionnel qui s’équilibre avec l’énergie du potentiel dans l’Eq. (5.27). Cela revient à
considérer que le système baigne dans un potentiel modifié fmodif = f(φ) + γB(x, y)φ. Le nouvel
état d’équilibre n’est alors pas une valeur entière de φ lorsque B(x, y) ne s’annule pas.

5.4.4.3 Défaut gaussien centré sur le substrat et cristal fixé

Un défaut gaussien est ajouté au substrat. Il est représenté par un cercle blanc pointillé
de rayon σ = 5 sur les images de simulation Figure 5.28. La condition initiale reste la même,
c’est-à-dire la présence d’une protubérance initiale sur la facette.
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Figure 5.28: (a-f) Propagation d’une nucléation gaussienne de hauteur 5, décalée de 20 unités
vers le haut, sur une terrasse de hauteur 5. Présence d’un défaut gaussien centré de hauteur 17.5
et d’écart-type σ = 5. La coordonnée en abscisse est x, et y est en ordonnée. La barre de couleur
indique le numéro de chaque marche. Paramètres choisis : L̃ = 104, w̃BC = 4, w̃s = 0.2, W̃ = 1,
CBC = Cinit = 0.2, γ̃ = 1 et λ̃ = 3.

Les figures 5.29 représentent les vues en coupe suivant l’axe x = 50. La position du cristal est
fixée à la coordonnée 0. Le substrat est représenté en orange.

Figure 5.29: (a-f) Vue en coupe à x = 50 associée aux simulations de la Figure 5.28. Paramètres
choisis : L̃ = 104, w̃BC = 4, w̃s = 0.2, W̃ = 1, CBC = Cinit = 0.2, γ̃ = 1 et λ̃ = 3.

La croissance du cristal est ralentie par le défaut, les marches atomiques se propagent autour.
Si l’interaction est suffisamment forte entre le défaut et le cristal, alors les marches ne peuvent
même pas se rejoindre sous le défaut. Cela s’observe sur la Figure 5.28 par la couleur violette
du cristal au niveau du défaut, et sur la Figure 5.29 par la présence d’une cavité profonde de 5
hauteurs de marche.

Mais jusqu’ici, les résultats des simulations ne tiennent pas compte d’un éventuel mouvement
du cristal qui est observé dans les expériences de [6]. Nous implémentons désormais ce mouvement
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dans notre modèle.

5.4.4.4 Défaut gaussien centré sur le substrat et cristal mobile

Les simulations suivantes résolvent le système d’équations général (5.33), (5.34) et (5.35). Le
déplacement du cristal est cette fois autorisé. Sa position zc varie dans le temps, et sa dérivée
temporelle ∂tzc = ucz représente sa vitesse de déplacement. Une force de poussée extérieure Fcz

est également ajoutée pour maintenir le cristal à une distance finie du substrat. La viscosité
dynamique, qui est reliée au paramètre ν̃ par l’Eq. (D.36), est choisie à η = 10−3 dans tout le
chapitre. Les simulations donnent une valeur numérique du temps de relaxation hydrodynamique
ν̃ ∼ 5− 10.

Figure 5.30: (a-f) Propagation d’une nucléation gaussienne de hauteur 5, décalée de 20 unités
vers le haut, sur une terrasse de hauteur 5. Présence d’un défaut gaussien centré de hauteur
17.5 et d’écart-type σ = 5. Le mouvement du cristal sur l’axe z est considéré. La coordonnée en
abscisse est x, et y est en ordonnée. La barre de couleur indique le numéro de chaque marche.
Paramètres choisis : L̃ = 104, w̃BC = 4, w̃s = 0.2, W̃ = 1, CBC = Cinit = 0.2, γ̃ = 1, λ̃ = 3,
F̃cz = 250 et η = 10−3.

La Figure 5.31 représente l’évolution du cristal par une vue en coupe au niveau de la coordonnée
x = 50. La position du cristal est fixée à la coordonnée 0. En orange, la coordonnée représentée
est hs − zc. Cela revient à se placer dans le référentiel du cristal et voir un déplacement du cristal
vers le bas comme un déplacement du substrat vers le haut.
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Figure 5.31: (a-f) Vue en coupe à x = 50 associée aux simulations de la Figure 5.30. Paramètres
choisis : L̃ = 104, w̃BC = 4, w̃s = 0.2, W̃ = 1, CBC = Cinit = 0.2, γ̃ = 1, λ̃ = 3, F̃cz = 250 et
η = 10−3.

La position du cristal en fonction du temps est tracée sur la Figure 5.32. Le premier point est
positionné en zc = 0. Le cristal se rapproche du substrat car il est poussé par la force extérieure.
Au fur et à mesure de sa croissance, le cristal s’éloigne progressivement du défaut. À la fin de
sa croissance, il atteint une position stationnaire pour laquelle la force extérieure Fcz compense
exactement la répulsion dû à la pression de disjonction dans l’Eq. (5.35).

Figure 5.32: Position du cristal en fonction du temps lors de la réalisation des Figures 5.30 et
5.31.

À la différence des simulations à cristal fixé représentées en Figures 5.28 et 5.29, le cristal peut
désormais poursuivre sa croissance jusqu’à obtenir une facette supérieure plate avec F̃cz = 250.
Mais nous remarquons que la configuration du cristal n’est pas la même sous le défaut suivant
l’intensité de la force de poussée extérieure.

Figure 5.33: Différentes configurations cristallines pour (a) F̃cz = 250, (b) F̃cz = 270, (c)
F̃cz = 350. Pour toutes les figures : L̃ = 104, w̃BC = 4, w̃s = 0.2, W̃ = 1, CBC = Cinit = 0.2,
γ̃ = 1, λ̃ = 3 et η = 10−3.
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La configuration stationnaire dépend de la force appliquée F̃cz. Cette différence nous pousse à
déterminer les différentes configurations d’équilibre entre le défaut et le cristal pour différentes
valeurs de F̃cz.

5.4.4.5 Les différents états stationnaires du cristal

Pour s’assurer que le système est bien arrivé à une configuration stationnaire, il faut tenir
compte également du temps caractéristique de relaxation du transport des particules par diffusion.
D’après l’Eq. (D.78) de l’annexe, les particules diffusent sur une longueur L̃diff au bout d’un
temps τ̃diff . La configuration stationnaire est donc atteinte lorsque la longueur de diffusion L̃diff

est supérieure à la taille du système L. Ainsi, dans notre cas avec L̃ = 100, le régime stationnaire
ne peut être atteint qu’au bout d’un temps supérieur à τ̃min = L2 = 104. De plus, comme nous
pouvons le voir sur la Figure 5.32, la position du cristal suivant l’axe z relaxe au bout d’un
temps τrelax,z ≈ 103 � τ̃min. Le processus de diffusion est donc limitant, pour atteindre le régime
stationnaire il faut attendre au minimum un temps

t > τ̃min = 104. (5.54)

Nous réalisons une série de simulations numériques pour déterminer les configurations station-
naires du cristal en fonction de la force de poussée extérieure. Expérimentalement, la croissance
du cristal s’effectue couche par couche, c’est ce que nous cherchons à modéliser. Le protocole
numérique mis en place est le suivant :

1. une protubérance initiale de hauteur 5 marches est implémentée pour une certaine valeur
de force F̃cz = 250. Le cristal relaxe alors vers son état stationnaire pendant un temps tnucl.
Ce temps est choisi de manière à ce qu’une courbe de couleur sur la Figure 5.34 puisse être
tracée en l’espace d’une ou deux journées.

2. Une protubérance supplémentaire d’une hauteur d’une marche est ajoutée sur la terrasse
supérieure, tout en incrémentant la force de poussée extérieure de 2 unités : F̃cz(t+ tnucl) =
F̃cz(t) + 2.

3. On laisse le cristal relaxer à nouveau pendant un temps tnucl.

4. On recommence les étapes 2 et 3, et on enregistre chacun des états stationnaires au
temps tnucl après l’ajout d’une protubérance, c’est-à-dire, juste avant l’ajout d’une nouvelle
protubérance.

Nous procédons ainsi pour une plage de valeurs de F̃cz. On note n la profondeur de la cavité,
c’est-à-dire la distance entre la terrasse supérieure du cristal et le fond de la cavité induite par le
défaut.

Le temps de calcul numérique pour tracer une courbe de couleur sur la Figure 5.34 est compris
entre 30 et 40 heures avec les paramètres choisis suivants : L̃ = Nxdx = 100, dx = 0.2, Nt ≈ 106,
dt = 0.1, Nt,nucl = 1.2 104 (nombre de pas de temps entre deux ajouts de protubérance), η = 10−3.
Avec ces simulations, la durée laissée pour la relaxation entre deux ajouts de protubérance est
tnucl = Nt,nucldt = 12000 × 0.1 = 1200 < τ̃min. La condition de l’Eq. (5.54) n’est donc pas
vérifiée. Pour la respecter, il faudrait faire tourner les simulations sur un temps 10 fois plus long,
c’est-à-dire sur une dizaine ou quinzaine de jours pour une seule courbe de couleur.

Nous avons vu que τ̃min ∝ L2. Un système plus petit va naturellement relaxer plus rapidement.
D’après l’Eq. (D.36), le coefficient traduisant la viscosité dépend aussi de cette longueur ν ∝ ηL4,
donc une réduction de la taille du système entraîne une relaxation hydrodynamique plus rapide.



5.5. CONCLUSION 95

Figure 5.34: Configurations de la cavité du cristal pour différentes forces de poussée extérieure
Fcz. La hauteur de la cavité est notée n. Les différentes couleurs sont associées à différentes
valeurs de concentration initiale : rouge (Cinit = 0.1), orange (Cinit = 0.2), vert (Cinit = 0.4), bleu
(Cinit = 0.6), magenta (Cinit = 0.8), violet (Cinit = 0.9). Paramètres choisis : L̃ = 104, w̃BC = 4,
w̃s = 0.2, W̃ = 1, CBC = Cinit, γ̃ = 1, λ̃ = 3 et η = 10−3.

Plus la force est intense, plus le cristal ressent la présence du défaut, et plus sa morphologie
est impactée. La profondeur de la cavité formée par le défaut dans le cristal lors de la croissance
est représentée sur la Figure 5.34 en fonction de la force de poussée sur le cristal F̃cz. Plus la
concentration initiale Cinit est faible, plus les configurations semblent être différentes les unes
des autres. En revanche, les configurations semblent converger vers une même valeur limite pour
des concentrations Cinit plus fortes. Une perspective naturelle de ce travail serait d’effectuer
une analyse à l’aide de modèles analytiques simplifiés qui capturent le comportement des états
stationnaires et permettraient d’extrapoler les résultats des simulations vers des valeurs de
sursaturation plus faibles.

5.5 Conclusion

Nous avons développé un modèle de champ de phase qui vise à décrire la croissance d’un
cristal dans une solution et confiné par des parois environnantes. Pour cela, nous avons modifié
un code, écrit pour résoudre un système d’équations différentielles par méthode spectrale.

Le système devant être confiné par les limites de la facette du cristal, nous avons ajouté
une fonction de bord qui remplit ce rôle. De plus, la croissance du cristal peut s’effectuer par la
propagation de plusieurs marches atomiques simultanément, un changement du potentiel f d’une
forme en double puits en une forme sinusoïdale a été effectué. Les parois qui confinent le cristal
ne sont pas nécessairement plates, nous avons donc ajouté la présence d’un défaut sur le substrat
et analysé les conséquences de sa présence sur la dynamique de croissance. Finalement, il a été
observé que la croissance de marches atomiques déplace le cristal [6], les équations ont donc été
modifiées pour tenir compte de la répulsion du cristal par le substrat.

Le modèle développé est une base sur laquelle travailler pour analyser la croissance d’un
cristal confiné. Un premier résultat assez intuitif a été obtenu et représenté sur la Figure 5.34. Il
montre l’influence du défaut sur la configuration du cristal lors de sa croissance. Une cavité se
forme sous le défaut, et sa hauteur dépend de la force de poussée du cristal.
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Chapitre 6

Conclusion

Dans cette thèse, nous avons développé plusieurs modèles de croissance de cristal sous
contrainte de confinement. Les chapitres 2, 3 et 4 ont été consacrés à la croissance et aux collisions
d’interfaces, le chapitre 5 présente un modèle de croissance de cristal confiné. Dans les premiers
chapitres, notre objectif est de décrire la rugosité du joint de grains dans le cadre d’un modèle qui
inclut la déposition, la diffusion, l’attachement-détachement des atomes aux bords des domaines
2D, les effets de tension de surface, et les fluctuations statistiques. Dans le chapitre 5, l’objectif
est de caractériser le comportement des facettes en présence d’un défaut de rugosité du substrat
confinant.

Dans le chapitre 2, nous avons développé un modèle de Langevin linéaire décrivant la
propagation de deux interfaces se propageant l’une en face de l’autre avant d’entrer en collision.
Les deux interfaces n’interagissent que par la diffusion des particules disponibles pour la croissance.
Ce modèle nous a permis de différencier trois régimes de croissance suivant les valeurs du flux de
déposition et de la cinétique d’attachement-détachement des particules. À très faible déposition,
le système se trouve dans un régime de croissance lente, proche équilibre caractérisé par un
exposant de rugosité de la classe EW. Dans le régime limité par l’attachement-détachement des
particules, et avec des flux de déposition suffisamment élevés, le système se trouve dans un régime
de forte croissance de la rugosité dû aux fluctuations statistiques. Dans le régime limité par la
diffusion (pour des grands flux de déposition et pour une cinétique d’attachement-détachement
rapide), nous observons la naissance d’instabilités morphologiques caractérisées par une croissance
drastique de la rugosité des interfaces. Après la collision, la rugosité relaxe vers un état d’équilibre
en passant par un minimum, à l’exception de la croissance proche-équilibre.

Dans le chapitre 3, nous développons un modèle sur réseau qui vise à appuyer l’étude précédente
de Langevin, intégré avec un algorithme KMC. Les ingrédients physiques utilisés sont les mêmes.
Les simulations mènent à des comportements en accord avec le modèle de Langevin pour les trois
régimes décrits ci-dessus. De plus, pour des très grands flux de déposition, un régime additionnel
apparaît, caractérisé par une croissance de type RD. Dans ce nouveau régime, la rugosité après
collision est la plus faible.

Le modèle de Langevin précédemment cité ne permet pas de décrire quantitativement l’évolu-
tion de la rugosité du joint de grains après la collision. Nous écrivons donc un deuxième modèle
de Langevin dédié à la relaxation du joint de grains vers l’équilibre. Le chapitre 4 est alors
consacré aux comparaisons entre les deux modèles de Langevin et les simulations KMC. Un
accord semi-quantitatif est obtenu pour l’évolution de la rugosité avant collision dans le régime
de croissance lente, et pour la localisation des différents régimes dans l’espace des paramètres. Un
accord quantitatif est observé pour le minimum de rugosité et la rugosité d’équilibre.

Le dernier chapitre porte sur la croissance d’un cristal confiné par des parois, avec l’objectif
de comprendre les phénomènes en jeu dans la force de cristallisation. Un modèle de champ de
phase a été dérivé puis résolu numériquement. Une nouvelle approche a permis de décrire les
conditions aux limites de bord de facette à l’aide d’une interface diffuse. Les effets d’un substrat
rugueux ont été envisagés avec l’ajout d’un défaut sur un substrat plat (régime de défaut dilué).
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98 CHAPITRE 6. CONCLUSION

La description d’un bord de facette est aussi un défi, et a été réalisée avec un paquet de marches
atomiques. Nous avons pu observer la naissance d’une cavité sous le défaut, et avons caractérisé
les états stationnaires du cristal.

L’ensemble de ce travail montre que de nouveaux comportements physiques émergent lors de
la croissance confinée, qui est pertinente dans de nombreux domaines d’application allant des
matériaux 2D à la géologie. La question du confinement reste encore peu explorée dans le domaine
de la croissance, et mérite d’être étudiée afin d’accéder à une meilleure vision des comportements
génériques qu’elle engendre.



Annexe A

Modèle de Langevin de croissance des
cristaux

A.1 Bruit de déposition

L’objectif de cet Appendice A.1 est de déterminer les amplitudes des fluctuations hors-équilibre
dans (2.42). Nous considérons un modèle unidimensionnel discret avec deux fronts en croissance
en direction l’un de l’autre via la déposition de particules en temps continu. Nous déterminons
ensuite l’amplitude des forces de Langevin dans un modèle continu qui est cohérent avec le modèle
discret à 1D.

A.1.1 Modèle unidimensionnel sur réseau

Figure A.1: Deux fronts bidimensionnels plats représentés comme deux lignes unidimensionnelles
se faisant face. L’information suivant la direction transversale est inutile.

Le modèle unidimensionnel est composé de deux bords de domaines définis par leur position
z+ et z− suivant l’axe z, comme décrits sur la Fig. A.4. Les particules déposées diffusent selon z,
et s’attachent ensuite à un des bords. Nous nous plaçons dans la limite de faible flux de déposition,
où chaque particule déposée s’attache à un des bords avant qu’une nouvelle particule se dépose.
Comme les particules sont déposées en une position aléatoire entre les deux bords, les processus
de déposition-diffusion-attachement induisent un attachement aléatoire de particules à gauche ou
à droite avec une probabilité p = 1

2 . Dans l’esprit de l’approximation quasi-statique du corps du
texte, et sans compter sur la possibilité d’une cinétique d’attachement lente, nous supposons que
le processus de diffusion et d’attachement et instantané.

Sachant que nous nous focalisons sur le bruit relatif aux atomes fraîchement déposés, nous
faisons l’hypothèse que les particules ne se détachent jamais des bords. Ainsi, un seul des deux
évènements de déposition peut se réaliser :

z− → z− + 1, (A.1)
z+ → z+ − 1. (A.2)
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Ces deux évènements peuvent se réécrire en terme des modes en phase et en opposition de phase

Δz = z+ − z− → Δz − 1, (A.3)
Σz = z+ + z− → Σz ± 1. (A.4)

Le nombre de sites vides est égal à Δz. Nous notons m+ le nombre d’atomes déposés sur le côté +,
m− sur le côté -, et Σm = m+ +m− le nomnbr etotal d’atomes déposés. Nous faisons également
l’hypothèse d’une symétrie gauche-droite dans les conditions initiales z0+ = −z0− = Δz0/2,
et Σz0 = 0, où Δz0 est le nombre de sites libres initial. Nous avons donc z− = z0− + m− et
z+ = z0+ −m+. Cela donne une simple relation bijective entre Δz et Σm, et entre Σz et Δm :

Δz = Δz0 − Σm, (A.5)
Σz = Σz0 −Δm = −Δm. (A.6)

Chaque site entre les deux bords peut être rempli avec un taux τ−1. L’évolution de Δz dépend
uniquement du nombre de dépositions, et ne dépend pas du fait que les particules sont attachées
à gauche ou à droite. Ainsi, l’évolution de Δz peut être dérivée d’une analogie directe avec un
processus de désintégration, où Δz sites libres indépendants peuvent être remplis par une particule
avec un taux τ−1. La probabilité qu’un site libre soit occupé à un temps t est notée w(t) :

dw(t) = −w(t)
dt

τ
⇔ w(t) = e−

t
τ . (A.7)

La probabilité que Δz sites soient libres à un temps donné t est

P (Δz, t) =

(
Δz0
Δz

)
wΔz (1− w)Δz0−Δz , (A.8)

ce qui aboutit au nombre moyen de sites libres

〈Δz〉t =
∑
Δz

(
Δz0
Δz

)
wΔz (1− w)Δz0−Δz Δz,

〈Δz〉t = wΔz0 = Δz0 e−
t
τ . (A.9)

Nous retrouvons l’effet Zénon avec une distance inter-front qui décroît exponentiellement comme
dans l’Eq. (2.14). Le second moment de Δz est donné par

〈
Δz2

〉
t
=
∑
Δz

(
Δz0
Δz

)
wΔz (1− w)Δz0−Δz (Δz)2,

= w(1− w)Δz0 +Δz20w
2, (A.10)

ce qui permet d’obtenir la variance

VΔ =
〈
Δz2

〉
t
− 〈Δz〉2t = Δz0 e−

t
τ

(
1− e−

t
τ

)
. (A.11)

Dans la suite, nous écrivont les propriétés de Σz comme une fonction de Δz. Sachant que Δz
décroît de manière monotone avec le temps, nous pouvons directement substituer les valeurs à t
fixé en valeurs à Δz fixé. La probabilité d’obtenir un nombre de particules déposées Σz sachant
que l’on a un écart Δz entre les deux fronts est notée P (Σz|Δz), et la valeur attendue pour une
certaine valeur Δz est notée 〈 〉Δz. Nous démarrons avec la formule des probabilités totales :

P (Σz, t) =

Δz0∑
Δz=0

P (Σz|Δz)P (Δz, t). (A.12)
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Le nme moment de Σz à l’instant t s’écrit

〈(Σz)n〉t =
∑
Σz

(Σz)n P (Σz, t)

=

Δz0∑
Δz=0

P (Δz, t) 〈(Σz)n〉Δz . (A.13)

où
〈(Σz)n〉Δz =

∑
Σz

(Σz)n P (Σz|Δz). (A.14)

Sachant que Σz = Σm− 2m+, nous pouvons évaluer les moments de m+〈
mn

+

〉
Δz

=
∑
m+

mn
+P (m+|Δz). (A.15)

La probabilité d’avoir m+ particules attachées au côté + parmi Σm particules déposées est

P (m+|Δz) = P (m+|Σm) =
1

2Σm

(
Σm
m+

)
. (A.16)

À partir de (A.15), pour n=1 et n=2, nous obtenons :

〈m+〉Δz =
∑
m+

m+P (m+|Δz) =
1

2
Σm, (A.17)

〈
m2

+

〉
Δz

=
∑
m+

m2
+P (m+|Δz) =

1

4
Σm+

1

4
(Σm)2, (A.18)

ce qui aboutit finalement à

〈Σz〉Δz = Σm− 2 〈m+〉Δz = 0, (A.19)

〈(Σz)2〉Δz = 〈(Σm− 2m+)
2〉Δz = Σm. (A.20)

À partir de (A.13), la moyenne s’annule 〈Σz〉t = 0, alors que la variance est donnée par :

VΣ =
〈
(Σz)2

〉
t
=

Δz0∑
Δz=0

(Σz)2 P (Δz, t)

= Δz0

(
1− e−

t
τ

)
. (A.21)

A.1.2 Modèle de Langevin

Nous élaborons désormais les équations continues de Langevin pour qu’elles soient cohérentes
avec (A.11) et (A.21). La position suivant la direction x parallèle aux fronts est exprimée
par l’indice discret m. Nous faisons l’hypothèse que les processus Δzm et Σzm à m donné est
indépendant des autres. Cela signifie, en termes physiques, que nous faisons l’hypothèse que
l’attachement se réalise à la même coordonnée x que la déposition. La décroissance de la distance
entre les deux fronts Δz est proportionnelle au taux de déposition comme dans (A.9) :

∂tΔzm = −1

τ
Δzm + ϕ̃Δ,m(t), (A.22)

∂tΣzm = ϕ̃Σ,m(t). (A.23)

Les forces de Langevin ont une moyenne nulle 〈ϕ̃Δ,m(t)〉 = 〈ϕ̃Σ,m(t)〉 = 0. Elles sont égelement
décorrélées en temps, et leur amplitude sont définies par〈

ϕ̃i,m(t1)ϕ̃j,m′(t2)
〉
= 2D̃i,m(t1)δ(t1 − t2)δm,m′δi,j (A.24)
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où i et j représentent soit Δ soit Σ, et où δn,n′ est le symbole delta de Kronecker. Les équations
(A.22) et (A.23) se résolvent de la manière suivante :

Δzm(t) = Δz0,me−t/τ +

∫ t

0
dt1 ϕ̃Δ,m(t1)e

1
τ
(t1−t), (A.25)

Σzm(t) =

∫ t

0
dt1 ϕ̃Σ,m(t1)e

1
τ
(t1−t). (A.26)

Cela entraîne que 〈Δzm〉t = Δz0,me−t/τ et 〈Σzm〉t = 0, ce qui est en accord avec (A.9) et (A.19).
Les variances s’écrivent :

VΔ =
〈
(Δzm)2

〉
t
− 〈Δzm〉2t =

∫ t

0
dt1 2D̃Δ,me

2
τ
(t1−t), (A.27)

VΣ =
〈
(Σzm)2

〉
t
=

∫ t

0
dt1 2D̃Σ,m(t1). (A.28)

Nous imposons ensuite les expressions de D̃Δ,m et D̃Σ,m pour être en accord avec (A.11) et
(A.21) :

2D̃Δ,m(t) = 2D̃Σ,m(t) =
1

τ
〈Δzm〉t . (A.29)

En effet, en utilisant ces expressions, nous obtenons

VΔ =

∫ t

0
dt1

1

τ
〈Δzm〉t1 = Δz0,me

−t
τ

(
1− e−

t
τ

)
, (A.30)

VΣ =

∫ t

0
dt1

1

τ
〈Δzm〉t1 = Δz0,m

(
1− e−

t
τ

)
. (A.31)

Nous passons maintenant à la limite continue. La multiplication des Eqs. (A.22) et (A.23) par
la longueur atomique a débouche sur

∂tΔh(x, t) = −1

τ
Δh(x, t) + ϕΔ,m(x, t), (A.32)

∂tΣh(x, t) = ϕΣ,m(x, t), (A.33)

où aϕ̃i,m(t) = ϕi,m(x, t) et

〈
ϕi(x, t)ϕj(x

′, t′)
〉
= Ai(x, t)δ(x− x′)δ(t− t′)(2π)2δi,j . (A.34)

À partir de (A.22), (A.23), (A.32) et (A.33), nous obtenons

〈
ϕi(x, t)ϕj(x

′, t′)
〉
= a2

〈
ϕ̃i,m(t)ϕ̃j,m′(t′)

〉
. (A.35)

Finalement, en considérant la limite δm,m′ −−−→
a→0

a δ(x− x′), nous obtenons

AΔ,m(x, t) = AΣ,m(x, t) = 2D̃Σ,m(t)a3 = 2Ω2Fh̄(0)(t). (A.36)

ce qui est identique à (2.42).

A.2 Rugosité proche équilibre

Dans cette appendice, nous fournissons une dérivation des équations d’évolution de la rugosité
dans la limite de faible flux de particules entrant F → 0. Nous démarrons avec l’équation
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d’évolution du spectre de puissance de l’Eq.(2.53). En effectuant un changement de variables t en
h̄(0)(t), nous obtenons

∂h̄(0)〈|Σh(1)q (t)|2〉 =− 2
λΣq

ΩFh̄(0)
〈|Σh(1)q (t)|2〉

− BΣqL

ΩFh̄(0)
− 2ΩL. (A.37)

Comme les grandes longueurs d’onde contribuent plus fortement à la rugosité à l’équilibre, nous
nous attendons à ce que le processus de rugosification soit dominé par les modes aux grandes
longueurs d’onde proche de l’équilibre. En conséquence, nous prenons les deux limites F → 0 et
q → 0 dans les expressions de λΣq et de BΣq, ce qui donne lieu à

ΩFh̄(0)(h̄(0) +
D

ν
)∂h̄(0)〈|Σh(1)q (t)|2〉 =

2ΩDc(0)eq Γq2〈|Σh(1)q (t)|2〉 − 4Ω2c(0)eq DL.
(A.38)

En considérant une condition initiale plate 〈|Σh(1)q (0)|2〉 = 0, la solution de cette équation est
donnée par

〈|Σh(1)q (t)|2〉 = 2ΩL3

Γ(2πn)2
(1− e−vn2

). (A.39)

où

v = 2ΩΓ

(
2π

L

)2 νc
(0)
eq

ΩF
ln

1 + D
νh̄(0)(t)

1 + D
νh̄(0)(0)

> 0. (A.40)

La rugosité Σ est ainsi évaluée par la formule

〈W 2
Σ〉 =

ΩL

2π2Γ

∑
n �=0

1

n2
(1− e−vn2

). (A.41)

La rugosité 〈W 2
Σ〉 révèle différents comportements quand v � 1 et quand v � 1.

Nous discutons maintenant les deux régimes qui émergent lorsque v est bas ou élevé. Premiè-
rement, dans la limite v � 1, le terme e−vn2 est négligeable dans l’Eq.(A.41), et nous obtenons la
valeur asymptotique attendue à l’équilibre Eq.(2.57).

Dans la limite opposée v � 1, la somme peut être approximée par une intégrale

〈W 2
Σ〉 ≈

ΩL

2π2Γ
2

∫ ∞

1
dn

1

n2
(1− e−vn2

)

≈ ΩL

2π2Γ
2v1/2

∫ ∞

0
dx

1

x2
(1− e−x2

)

=
ΩL

2π2Γ
2v1/2π1/2. (A.42)

où x = vn2.
Il faut être particulièrement vigilant car la relation entre v et t est non-linéaire et dépend de

la cinétique d’attachement-détachement.
Cependant, de manière générale lorsque ΩFt � 1 :

v ≈ 2ΩΓ

(
2π

L

)2 νc
(0)
eq t

1 + νh̄(0)(0)/D
. (A.43)

Ainsi v � 1 correspond à

t � 1

2Ωc
(0)
eq νΓ

(
L

2π

)2
(
1 +

νh̄(0)(0)

D

)
(A.44)

Dans ce régime où à la fois t � 1/(ΩF ) et l’inégalité (A.44) sont vérifiées, l’Eq.(2.61) est obtenue
à partir des combinaisons des Eqs.(A.42) et (A.43).
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Figure A.2: Tracé de v × 4π2F/(2Γνc0eqL
2) en fonction du temps pour différentes valeurs de

cinétiques. En bleu νh̄(0)(0)/D = 10−2, en rouge νh̄(0)(0)/D = 1, et en vert νh̄(0)(0)/D = 103.
Nous avons utilisé les paramètres suivants pour le modèle : Ω = 1, D = 104/4, c0eq = 10−2,
Γ = 4.05, L = 512, h̄(0)(0) = 32, F = 10−2.

Figure A.3: Rugosité aux temps courts pour différentes valeurs de cinétique ν. (2.51) en ligne
continue. (2.59) en ligne pointillée. (2.61) en ligne discontinue pointillée. En rouge ν = 102 et
en vert ν = 1. Nous avons utilisé les paramètres suivants pour le modèle : Ω = 1, D = 104/4,
c0eq = 10−2, Γ = 4.05, L = 512, h̄(0)(0) = 32, F = 10−4.

A.3 Comportement aux temps courts

Nous démarrons de

∂h̄(0)〈|Σh(1)q (t)|2〉 =− 2
λΣq

ΩFh̄(0)
〈|Σh(1)q (t)|2〉

− BΣqL

ΩFh̄(0)
− 2ΩL. (A.45)
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La solution générale pour la rugosité est :

〈W 2
Σ〉 = − 1

L

∑
n �=0

∫ h(0)(t)

h(0)(0)
dh(0)′

{

exp

{(∫ h(0)

h(0)′
dh(0)′′

−2λΣq

ΩFh(0)′′
)}( B′

Σq

ΩFh̄(0)′
+ 2Ω

)}
. (A.46)

Le développement limité pour le comportement à temps court débouche sur :

〈W 2
Σ〉 = − 1

L

N∑
n �=0

(
h(0)(t)− h(0)(0)

)(BΣq(h̄
(0))

ΩFh̄(0)
+ 2Ω

)

=
(
h(0)(0)− h(0)(t)

) 1
L

( N∑
n �=0

BΣq(h̄
(0))

ΩFh̄(0)
+ 4ΩN

)
. (A.47)

Le premier terme dans la parenthèse est écrit de la manière suivante

BΣq(h̄
(0))

ΩFh̄(0)
=

4Ωc
(0)
eq D

Fh̄(0)
q

tanh k + D
ν q

, (A.48)

à partir duquel nous pouvons considérer deux limites :

BΣq(h̄
(0))

ΩFh̄(0)
−→

ν/D→+∞
4Ωc

(0)
eq D

Fh̄(0)
q

tanh k
, (A.49)

BΣq(h̄
(0))

ΩFh̄(0)
−→

ν/D→0

4Ωc
(0)
eq D

Fh̄(0)
ν

D
=

4Ωc
(0)
eq ν

F h̄(0)
. (A.50)

Pour calculer la somme sur tous les modes du dernier terme, nous rappelons les correspondances
entre les modèles discret et continu : q = 2πn/L et N = L/2a, ainsi dn = Ldq/2π et q = πn/Na.
De plus, k = qh̄(0) ce qui donne dk = h̄(0)dq. Finalement, dn = L/(2πh̄(0))dk. Pour 2πh̄(0)/L � 1,

|n|≤N∑
n �=0

k

tanh k
� L

πh̄(0)

∫ π
a
h̄(0)

π
L
h̄(0)

dk
k

tanh k

� L

πh̄(0)

∫ π
a
h̄(0)

0
dk

k

tanh k
. (A.51)

Désormais, en fonction du rapport πh̄(0)/a, nous obtenons deux nouvelles limites. Premièrement,
h̄(0) � a

|n|≤N∑
n �=0

k

tanh k
� L

πh̄(0)
πh̄(0)

a
=

L

a
. (A.52)

Deuxièmement, h̄(0) � a, donc tanh k ∼
k
1

1 et ainsi,

|n|≤N∑
n �=0

q

tanh k
� L

πh̄(0)2
1

2

(
πh̄(0)

a

)2

=
Lπ

2a2
. (A.53)
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La rugosité est calculée dans les deux limites. Premièrement, dans le cas d’un processus limité
par la diffusion ν/D → +∞ :

〈W 2
Σ〉 �

ν/D→+∞
(
h̄(0)(0)− h(0)(t)

)(4Ωc(0)eq D

Fh̄(0)L

Lπ

2a2
+

4ΩN

L

)

=
(
h̄(0)(0)− h(0)(t)

)(4Ωc(0)eq D

Fh̄(0)
π

2a2
+

2Ω

a

)

� h̄(0)(0)ΩFt
(2Ωc(0)eq D

Fh̄(0)
π

a2
+

2Ω

a

)
〈W 2

Σ〉 �
ν/D→+∞

2Ω2

a

(
c(0)eq

πD

a
+ Fh̄(0)(0)

)
t. (A.54)

De manière similaire, pour un processus limité par la cinétique d’attachement-détachement
ν/D → 0 :

〈W 2
Σ〉 �

ν/D→0

2Ω2

a

(
c(0)eq 2ν + Fh̄(0)(0)

)
t (A.55)

Finalement, quelle que soit la limite choisie, 〈W 2
Σ〉 ∝ t.

Figure A.4: Rugosité du mode en phase (en bleu) avec deux comportements asymptotiques :
en rouge W 2

Σ ∝ t de l’Eq. (2.56), et en vert W 2
Σ ∝ t1/2 de l’Eq. (2.61). Nous avons utilisé les

paramètres suivants pour le modèle : Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05, L = 512,
h̄(0)(0) = 32, ν = 1, F = 10−4.

A.4 Temps du maximum de rugosité

Notre attention est désormais focalisée sur le pic de rugosité. Pour estimer le temps auquel il
est atteint et son amplitude, nous écrivons un modèle analytique dans la limite où il n’y a pas de
fluctuations à l’équilibre η. Nous démarronns encore une fois de (A.45), mais ici nous négligeons
les fluctuations à l’équilibre.

∂h̄(0)〈|Σh(1)q (t)|2〉 = −2
λΣq

ΩFh̄(0)
〈|Σh(1)q (t)|2〉 − 2ΩL. (A.56)
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Figure A.5: Rugosité à temps court. En rouge ν = 10−3, en bleu ν = 1, en vert ν = 105. Les
lignes discontinues pointillées sont les solutions de l’Eq. (A.55). Nous avons utilisé les paramètres
suivant spour le modèle : Ω = 1, D = 104/4, c0eq = 10−2, Γ = 4.05, L = 512, h̄(0)(0) = 32,
F = 10−4.

avec le taux de croissance λΣq

λΣq =
Ωνh̄(0)

D

(
F − c0eqΓD(

h̄(0)
)3 p2 − F

tanh k

k

)

1 +
νh̄(0)

D

tanh k

k

. (A.57)

Dans la limite de faible cinétique νh̄(0)/D � 1, le taux de croissance s’écrit :

λΣq =
Ωνh̄(0)

D

(
F

(
1− tanh k

k

)
− c0eqΓD(

h̄(0)
)3k2

)
. (A.58)

Nous considérons maintenant uniquement les modes q les plus grands, car ils ont une plus grande
influence sur la rugosité que les petits modes q. Nous prenons donc la limite (k � 1) :

λΣq = −Ωνc0eqΓ(
h̄(0)

)2 k2 = −Ωνc0eqΓq
2 (A.59)

En écrivant

Xq =
2νΓc0eq

F
q2, (A.60)

l’équation (A.56) se réécrit

∂h̄(0)〈|Σh(1)q (t)|2〉 = Xq

h̄(0)
〈|Σh(1)q (t)|2〉 − 2ΩL, (A.61)

et est résolue en

〈|Σh(1)q (t)|2〉 = 2ΩL

1−Xq

[(
h̄(0)(t)

h̄
(0)
0

)Xq

−
(
h̄(0)(t)

h̄
(0)
0

)]
. (A.62)

Le temps t pour lequel le pic du spectre de rugosité apparaît à un certain q peut être estimé à
partir de ce modèle :

∂h̄(0)〈|Σh(1)q (t)|2〉 = 1

h̄
(0)
0

2ΩL

1−Xq

[
Xq

(
h̄(0)(t)

h̄
(0)
0

)Xq−1

− 1

]
. (A.63)
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Le spectre atteint un extremum, qui est en fait un maximum, pour

∂h̄(0)〈|Σh(1)q (t)|2〉 = 0 ⇔
(
h̄(0)(t)

h̄
(0)
0

)Xq−1

= X−1
q

⇔ −ΩFt(Xq − 1) = − lnXq

⇔ t = tqpeak =
− lnXq

ΩF (1−Xq)
. (A.64)

Les modes sont donnés par qn = 2nπ/L, et le splus hauts modes sont donnés par le seuil numérique
nc = L/2

√
Ω ce qui conduit à qc = π/

√
Ω. En faisant l’hypothèse que le pic est déterminé par le

mode plus grand

X = Xqc =
2νΓc0eqπ

2

ΩF
, (A.65)

le temps estimé pour le pic de rugosité est

tpeak =
− lnX

(1−X)

1

ΩF
. (A.66)

A.5 Détails suplémentaires sur la limite EW

Afin d’obtenir une évaluation plus précise de l’approximation somme discrète/somme continue,
nous pouvons utiliser la formule d’Euler-Maclaurin (EM) :

∞∑
n=1

f(n) �
∫ N

1
dn f(n) +

f(1)

2
− f ′(1)

12
, (A.67)

avec

f(n) =
1− e−vn2

n2
, (A.68)

La rugosité s’écrit ainsi

〈W 2
Σ〉 �

ΩL

π2Γ

[ ∫ +∞

1
dn

1

n2
(1− e−vn2

) +
f(1)

2
− f ′(1)

12

]
, (A.69)

ce qui aboutit, après intégration, à

〈W 2
Σ〉 �

ΩL

π2Γ

(
5

3
(1− e−v)− v

6
e−v +

v1/2

2π1/2
Erfc(v1/2)

)
. (A.70)

Aux temps longs, t → +∞, h(0) → 0 et v � 1, la limite est donnée par

〈W 2
Σ|EM〉eq =

ΩL

6Γ

10

π2
. (A.71)

À l’inverse, le régime des temps courts correspond à v � 1 et

t >
1

ΩF
ln

νh̄(0)

D
, (A.72)

de sorte que

〈W 2
Σ〉 � 2Ω

(
2νc

(0)
eq Ω

πΓ

)1/2

t1/2. (A.73)
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Nous démarrons encore avec la dynamique du spectre de puissance

∂t〈|Σh(1)q (t)|2〉 =
(
BΣqL+ 2Ω2Fh(0)L

)
+ 2λΣq(t)〈|Σh(1)q (t)|2〉

(A.74)

Le changement de variable h̄(0) = h̄(0)(0)e−ΩFt donne

∂t =
dh̄(0)

dt
∂h̄(0) = −ΩFh̄(0)∂h̄(0) (A.75)

Ainsi,

∂h̄(0)〈|Σh(1)q (t)|2〉 = −2
λΣq

ΩFh̄(0)
〈|Σh(1)q (t)|2〉

− BΣqL

ΩFh̄(0)
− 2ΩL

(A.76)

Nous prenons les limites proche équilibre F → 0 et grandes longueurs d’onde q → 0. La seconde
hypothèse est considérée car nous savons que les grandes longueurs d’onde dominent la rugosité
d’équilibre.

Vq = sinh k +
D

ν
q cosh k −→

k→0
k(1 +

D

νh̄(0)
) (A.77)

λΣq =
Ω

Vq
(−Dc(0)eq Γq3 cosh k) (A.78)

−→
q→0

− ΩDc
(0)
eq Γ

k(1 + D
νh̄(0) )

q3 = −ΩDc
(0)
eq Γ

h̄(0) + D
ν

q2 (A.79)

BΣq = 4Ω2c(0)eq D
q cosh k

Vq
(A.80)

−→
q→0

4Ω2c(0)eq D
q

k(1 + D
νh̄(0) )

=
4Ω2c

(0)
eq D

h̄(0) + D
ν

(A.81)

ΩFh̄(0)∂h̄(0)〈|Σh(1)q (t)|2〉 =

2
ΩDc

(0)
eq Γ

h̄(0) + D
ν

q2〈|Σh(1)q (t)|2〉 − 4Ω2c
(0)
eq DL

h̄(0) + D
ν

(A.82)

Ensuite,

ΩFh̄(0)(h̄(0) +
D

ν
)∂h̄(0)〈|Σh(1)q (t)|2〉 =

2ΩDc(0)eq Γq2〈|Σh(1)q (t)|2〉 − 4Ω2c(0)eq DL
(A.83)

Un nouveau changement de variable est réalisé h̄(0) → u avec u qui vérifie la relation

∂u =
ΩFh̄(0)

Dc
(0)
eq

(h̄(0) +
D

ν
)∂h̄(0) (A.84)

⇔ du

dh̄(0)
=

Dc
(0)
eq

ΩFh̄(0)(h̄(0) + D
ν )

(A.85)

⇔ u = −νc
(0)
eq

ΩF
ln (1 +

D

νh̄(0)
) < 0 (A.86)

L’équation (A.83) devient

∂u〈|Σh(1)q (t)|2〉 = 2ΩΓq2〈|Σh(1)q (t)|2〉 − 4Ω2L, (A.87)
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et est réécrite en

∂u{〈|Σh(1)q (t)|2〉 − 2ΩL

Γq2
} = 2ΩΓq2{〈|Σh(1)q (t)|2〉 − 2ΩL

Γq2
}. (A.88)

En considérant une condition initiale plate 〈|Σh(1)q (0)|2〉 = 0, la solution est donnée par

〈|Σh(1)q (t)|2〉 = 2ΩL

Γq2
(1− e2ΩΓq2u). (A.89)

L’évaluation de la rugosité Σ avec q = 2πn/L est donnée par :

〈W 2
Σ〉 =

1

L2

∑
q �=0

〈|Σh(1)q (t)|2〉 (A.90)

〈W 2
Σ〉 =

ΩL

2π2Γ

∑
n �=0

1

n2
(1− e2ΩΓ( 2πn

L
)2u) (A.91)

Pour calculer cette somme, nous l’approximons par sa limite continue, en utilisant la formule
d’Euler-Maclaurin (EM) :

N∑
n=1

f(n) =

∫ N

1
f(n)dn+

f(1) + f(N)

2
+

f ′(N)− f ′(1)
12

(A.92)

avec

f(n) =
1− e2ΩΓ( 2πn

L
)2u

n2
, (A.93)

et

f ′(n) =
16π2ΩΓu

nL2
e2ΩΓ( 2πn

L
)2u − 2(1− e2ΩΓ( 2πn

L
)2u)

n3
. (A.94)

ici, dn = 1 = L dq
2π . La rugosité s’écrit alors

〈W 2
Σ〉 �

ΩL

π2Γ

[ ∫ +∞

1
dn

1

n2
(1− e2ΩΓ( 2πn

L
)2u) +

f(1)

2
− f ′(1)

12

]
, (A.95)

〈W 2
Σ〉 �

4Ω

Γ

∫ +∞

2π
L

dq

2π

1

q2
(1− e2ΩΓq2u) +

ΩL

π2Γ

[
f(1)

2
− f ′(1)

12

]
(A.96)

En utilisant le changement de variable k2 = −2ΩΓq2u > 0 à l’intérieur de l’intégrale, et en
définissant k0 =

2π
L (−2uΩΓ)1/2, nous obtenons

〈W 2
Σ〉 �

4Ω

π

(−uΩ

2Γ

)1/2 ∫ +∞

k0

dk
(1− e−k2)

k2

+
ΩL

π2Γ

[
f(1)

2
− f ′(1)

12

]
.

(A.97)

〈W 2
Σ〉 �

4Ω

π

(−uΩ

2Γ

)1/2( 1

k0
(1− e−k20)

+ (π)1/2Erfc(k0)
)
+

ΩL

π2Γ

[
f(1)

2
− f ′(1)

12

] (A.98)



A.5. DÉTAILS SUPLÉMENTAIRES SUR LA LIMITE EW 111

〈W 2
Σ〉 �

ΩL

π2Γ
(1− e(

2π
L
)22uΩΓ) +

ΩL

π2Γ

[
f(1)

2
− f ′(1)

12

]

+ 4Ω

(−uΩ

2πΓ

)1/2

Erfc
(2π
L

(−2uΩΓ)1/2
) (A.99)

Lorsque t → +∞, h̄(0)(t) → 0 et u → −∞. De plus, en rappelant la relation xnErfc(x) −→
x→+∞ 0,

f(1) −→
u→−∞ 1 et f ′(1) −→

u→−∞ −2. À l’équilibre, avec la formule EM,

〈W 2
Σ|EM〉eq =

ΩL

π2Γ
(1 +

1

2
+

1

6
) =

ΩL

6Γ

10

π2
. (A.100)

À partir de la définition thermodynamique, en calculant la somme discrète sur tous les modes de
Fourier de la rugosité d’une seule ligne

〈W 2|discrete〉eq =
ΩL

12Γ
. (A.101)

Cependant, la rugosité de la somme des lignes est égale à deux fois la rugosité d’une seule ligne.

〈W 2
Σ|discrete〉eq = 2〈W 2|discrete〉eq =

ΩL

6Γ
. (A.102)

Ainsi, la formule EM donne une bonne approximation de la rugosité

〈W 2
Σ|EM〉eq

〈W 2
Σ|discrete〉eq =

10

π2
= 1.01 (A.103)

Sans les termes correctifs, le rapport serait égal à 6/π2 � 0.60

〈W 2
Σ〉 =

3

5
〈W 2

Σ|EM〉eq
{
1− e(

2π
L
)22uΩΓ +

f(1)

2
− f ′(1)

12

+
2π

L

(− 2uΩΓπ
)1/2Erfc

(2π
L

(−2uΩΓ)1/2
)} (A.104)

Nous définisson v = 2uΩΓ(2πL )2. For |v| � 1, c’es-à-dire 8π2Γc
(0)
eq ν

L2F
� 1, Erfc(v)∼ 1. Cette

approximation donne des termes en v1/2 avec des exposants plus élevés. Nous considérons
uniquement les termes en v1/2.

〈W 2
Σ〉 =

3

5
〈W 2

Σ|EM〉eq
{
2π

L

(− 2uΩΓπ
)1/2

+ o(v1/2)

}
(A.105)

� 2Ω

π1/2Γ1/2

(
2νc

(0)
eq

F
ln (1 +

D

νh̄(0)(0)
eΩFt)

)1/2

(A.106)

Pour des temps suffisamment longs

D

νh̄(0)(0)
eΩFt � 1 i.e t >

1

ΩF
ln

νh̄(0)

D
. (A.107)

Ainsi,

〈W 2
Σ〉 � 2Ω

(
2νc

(0)
eq

πΓF

)1/2(
ln

D

νh̄(0)(0)
+ ΩFt

)1/2

(A.108)

〈W 2
Σ〉 ∼ 2Ω

(
2νc

(0)
eq Ω

πΓ

)1/2

t1/2 ∝ t1/2 (A.109)

La rugosité est proportionnelle à 〈W 2
Σ〉 ∝ t1/2, ce qui est caractéristique d’un régime d’Edwards-

Wilkinson.
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Annexe B

Modèle Monte Carlo cinétique (KMC)

B.1 Dépendance en température des paramètres du modèle

Le coefficient de diffusion de particules mobiles peut s’écrire

D = a2ν exp{(−Es/kBT )}, (B.1)

où ν est une fréquence, Es est une énergie d’activation, kB est la constante de Boltzmann et T est
la température. Dans le modèle de déposition de Clarke et Vvedensky [135], ν est proportionnel
à la température. Cependant, plusieurs travaux de simulations prennent une valeur constante
ν ∼ 1012s−1 et, sous cette hypothèse, obtiennent des résultats en accord avec les expériences de
déposition de métaux et de semi-conducteurs [63]. Les valeurs typiques de Es pour ces matériaux
sont de l’ordre de 0.1–1 eV.

Le taux d’attachement de particules aux interfaces peut être écrit

Q = Q0 exp{(−Ea/kBT )}, (B.2)

où Q0 est une fréquence d’essais et Ea est l’énergie d’activation de ce processus. Ces valeurs
sont fortement dépendantes du type d’interactions entre les atomes et les molécules du matériau
en croissance. Dans certains cas, Q peut être considéré indépendant de la température, de
manière à ce que Ea = 0. C’est le cas de plusieurs modèles de déposition de films métalliques et
semi-conducteurs [63].

La probabilité de détachement εn s’écrit avec ε vérifiant

ε = exp{(−J/kBT )}, (B.3)

où J est l’énergie de lien avec un plus proche voisin.
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B.2 Évolution morphologique pour Q/D = 10−3

La Fig. B.1(a) montre des instantanés de croissance de cristaux pour des valeurs de paramètres
F/D = 10−8, Q/D = 10−3, ε = 0.1, 2d0 = 64a, et L = 1024a. Pour ce jeu de paramètres, la
valeur de D est 102 fois plus grande que celle de la Fig. 3.2(a) du texte principal, avec les autres
paramètres conservés aux mêmes valeurs. C’est un exemple de croissance d’interfaces dans le
régime limité par l’attachement.

La Fig. B.1(b) montre des instantanés de cristaux en croissance pour F/D = 10−1, Q/D =
10−3, ε = 0.1, 2d0 = 64, et L = 1024. Le coefficient D est 102 fois supérieur à celui de la Fig. 3.2(c)
du texte principal, avec les autres paramètres conservés aux mêmes valeurs. C’est un exemple de
croissance d’interfaces dans le régime de fort taux de couverture C̃.

Figure B.1: Instantanés des cristaux en croissance avec Q/D = 10−3, ε = 0.1, L = 1024, et
2d0 = 128 : (a) F/D = 10−8, (b) F/D = 10−1.
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B.3 Évolution de la rugosité pour une distance initiale 2d0 = 32

La Fig. B.2 montre l’évolution de la rugosité pour les mêmes paramètres de déposition que la
Fig. 3.4(a) du texte principal (Q/D = 10−1, ε = 0.1, et différentes valeurs de flux F ), mais avec
une distance 2d0 = 32 et une longueur L = 256.

Les plus faibles valeurs de rugosité avant et après la formation du joint de grains sur la Fig.
B.2, comparé avec la Fig. 3.4(a) du texte principal, sont les conséquences d’une diminution de la
largeur du gap 2d0.

Les variations de longueur L n’affectent ni la rugosification initiale ni la relaxation après
formation du joint de grains car il n’y a pas d’effet latéral de taille finie dans ces régimes. Comme
expliqué par l’Eq. (4.27), cette longueur affecte uniquement la rugosité à l’état stationnaire, qui
est proportionnelle à L1/2.

Figure B.2: Évolution de la rugosité pour une valeur constante Q/D = 10−1, pour une distance
d0 = l/2 = 16 et pour différentes valeurs de flux. Des lignes pointillées avec une valeur de pente
indiquée sont dessinées à titre de comparaison. Elles correspondent à des lois de puissance dont
l’exposant est égal à la pente. Les barres horizontales à W/a � 1 donnent une indication du
temps de collision des domaines (valeur moyenne plus ou moins un écart-type σ).
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B.4 Évolution de la rugosité pour Q/D = 10−3

La Fig. B.2 montre l’évolution de la rugosité pour Q/D = 10−3 et différentes valeurs de flux
F , avec les autres paramètres égaux à ceux de la Fig. 3.4(a) du texte principal.

C’est le cas pour des grands coefficients de diffusion de particules mobiles en comparaison
avec le taux d’attachement. Cela supprime le régime instable (limité par la diffusion), comme le
montre l’absence d’une pente supérieure à 1 dans ces graphiques.

Figure B.3: Évolution de la rugosité pour une valeur constante Q/D = 10−3, pour une distance
d0 = l/2 = 32 et pour différentes valeurs de flux. Des lignes pointillées avec une valeur de pente
indiquée sont dessinées à titre de comparaison. Elles correspondent à des lois de puissance dont
l’exposant est égal à la pente. Les barres horizontales à W/a � 1 donnent une indication du
temps de collision des domaines (valeur moyenne plus ou moins un écart-type σ).
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B.5 Évolution de la rugosité pour un faible taux de détachement
(ε = 0.01)

La Fig. B.4 montre l’évolution des rugosités W 2
Σ et W 2

Δ pour trois valeurs de flux F , avec les
mêmes paramètres que ceux de la Fig. 3.4(a) du texte principal, et pour des valeurs de ε = 0.1
et ε = 0.01. D’après l’équation (4.2), ces valeurs de ε correspondent respectivement à Γ = 4.05
utilisé dans toutes les figures de la section 2, et à Γ = 0.74.

La rugosité de la largeur du gap W 2
Δ suit la rugosité W 2

Σ aux temps courts avant de diminuer
drastiquement durant la collision, ce qui est également obtenu avec le modèle de Langevin. Le
scénario complet est observé pour ε = 10−1, mais les simulations KMC sont trop lentes pour
atteindre la rugosité asymptotique d’équilibre quand ε = 10−2.

Figure B.4: Évolution temporelle de la rugosité dans les simulations KMC. (a) W 2
Σ et (b) W 2

Δ

en fonction ce Dt pour différents rapports flux/diffusion. F/D = 10 : ε = 0.1 (rouge), ε = 0.01
(vert) ; F/D = 10−3 : ε = 0.1 (bleu), ε = 0.01 (orange) ; F/D = 10−6 : ε = 0.1 (marron), ε = 0.01
(magenta). Les autres paramètres sont Q/D = 0.1, 2d0 = 64 et L = 512. Les données des
simulations KMC de ces graphiques sont tirés de la Ref. [77].
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Annexe C

Modèle de Langevin de relaxation des
joints de grains

Dans cet appendice, nous proposons une autre dérivation de relaxation du joint de grains vers
l’équilibre. Celle du texte principal (Sec. 4.3 est proposée à partir de la relation d’Einstein tandis
que le suivant est dérivé à partir d’un modèle de réaction-diffusion de kinks. Un commentaire est
ensuite ajouté à propos d’une extension du modèle tenant compte d’un lien JGB entre les deux
cristaux.

C.1 Dérivation à partir d’un modèle de réaction-diffusion

Les kinks et les antikinks sont créés et annihilés par paire avec des taux gc et ga. Les
concentrations ck± de marches vers le haut ou vers le bas obéissent alors à

∂tck+(x, t) = −∂xjk+ + gc − ga, (C.1)
∂tck−(x, t) = −∂xjk− + gc − ga, (C.2)

où jk± sont les courants de marches montantes et descendantes. À l’équilibre, les courants de
marches sont dominés par la diffusion des marches, et nous prévoyons que

jk+ = −Dk∂xck+, (C.3)
jk− = −Dk∂xck−. (C.4)

Une telle expression est valide aux faibles températures lorsque toutes les marches sont bien
distantes les unes des autres, de manière à ce que Dk soit légèrement affecté par la présence des
autres marches voisines. Il convient cependant de noter que les modèles 1D sont connus pour
dévier de tels modèles moyennés naïfs avec présence de fluctuations.

La dérivée de la position de l’interface au niveau des extrémités est reliée au déséquilibre de
densité des marches. Dans la limite des faibles dérivées

∂xh = (ck+ − ck−)a⊥. (C.5)

En combinant ces équations avec les précédentes

∂txh = ∂t(ck+ − ck−)a⊥ = Dk∂xx(ck+ − ck−)a⊥,
= Dk∂xx∂xh. (C.6)

En conséquence

∂thGB = Dk∂xxhGB +A(t), (C.7)

où A(t) dépend du temps mais pas de l’espace. En croissance, A(t) ne va pas s’atténuer et dépend
du temps. À l’équilibre, A(t) s’annule en moyenne.

119



120 ANNEXE C. MODÈLE DE LANGEVIN DE RELAXATION DES JOINTS DE GRAINS

Comparé à la méthode de dérivation par la relation d’Einstein, nous obtenons un préfacteur
différent

Dk = R(2)a2‖ (C.8)

à la place de

R(2)pka⊥ΓGB = R(2)a2‖
1− ε

1 + ε
(C.9)

La différence s’annule pour les faibles valeurs de ε. Pour ε = 0.1, la différence est d’environ 20%.

C.2 Remarque supplémentaire : lien du joint de grains JGB

Dans le cas où un lien d’énergie JGB est présent entre les deux cristaux, les taux s’écrivent

R+(n) =
Q

2
ε4−nεnGB (C.10)

R−(n) =
Q

2
εnε4−n

GB (C.11)

où εGB = exp[−JGB/kBT ]. Les deux taux de création/annihilation de kinks sont égaux R±(2) =
(Q/2)ε2ε2GB.

De plus, l’énergie par segment microscopique de l’interface (paramètre du réseau) est J − JGB .
En conséquence, la substitution J/2 → J −JGB est utilisée en Eq.(4.2), aboutissant à l’expression
de la rigidité suivante

γ̃GB =
kBTa‖
2a2⊥

(
(εGB/ε)

1/2 − (ε/εGB)
1/2
)2
. (C.12)

Ainsi, les formules dérivées dans les précédents paragraphes sont toujours valides, à l’exception
des préfacteurs qui changent. Cependant, les dynamiques durant les premières phases de la
collision peuvent être qualitativement différentes dans la limite de croissance lente pour laquelle
des jonctions triples et des bulles peuvent apparaître. Dans la limite de croissance rapide à taux
de couverture 1, nous spéculons qu’un JB non nul n’affectera pas significativement la dynamique
de la collision.



Annexe D

Modèle de champ de phase

D.1 Dérivation des équations couplées

D.1.1 Modèle sans interaction entre le cristal et le substrat

L’énergie libre s’écrit avec un terme qui vise à lisser les interfaces, analogue à l’effet de la
tension de surface (	∇φ)2. De plus, le système a un nombre d’états stables fini. Nous ajoutons
donc un terme de potentiel f(φ). Nous voulons ajouter une condition pour l’homogénéité des
particules. L’énergie libre F est minimale lorsque le taux de couverture a atteint l’état θ = θeq.
Dans ce cas, la fonctionnelle d’énergie libre s’exprime alors sous sa forme la plus simple par
l’équation D.1 [116] :

F (φ, θ) =

∫
d	x
[
α

2
(	∇φ)2 + f(φ) +

λ

2
(θ − θeq)

2

]
, (D.1)

où λ est la constante de couplage entre le champ de phase et le champ de diffusion. Le taux de
couverture θ et le champ de phase φ sont couplés. La masse totale m (particules en phase liquide
θ + phase solide h) est reliée à θ par :

θ = m− h[φ], (D.2)

avec h[φ], le nombre de particules présentes dans la phase cristalline qui dépend de la valeur de φ.
La dérivée variationnelle de F par rapport à φ devient donc :

δF [φ,m− h[φ]]

δφ

∣∣∣∣
m
=

δF [φ,m− h[φ]]

δφ

∣∣∣∣
m
+

δF [φ,m− h[φ]]

δ(m− h[φ])

∣∣∣∣
m

δ(m− h[φ])

δφ

∣∣∣∣
m
. (D.3)

Le facteur devant la seconde dérivée partielle est donné par

δ(m− h[φ])

δφ

∣∣∣∣
m
= −g′(φ), (D.4)

où la fonction g(φ) est égale à h(φ) d’après la dérivation thermodynamique. Le modèle thermody-
namique dérive directement d’une énergie libre, mais un modèle numérique qui vise à reproduire
les observations expérimentales peut s’affranchir de cette contrainte. Dans leur papier [117],
les auteurs ont montré qu’un choix judicieux mais différent pour la fonction g′ permettait de
retrouver les mêmes équations que pour le modèle thermodynamique dans la limite appelée
"sharp-interface" pour laquelle W̃ → 0. En effet, ils ont montré que les équations du modèle
numérique tendent asymptotiquement vers celles du modèle thermodynamique pour une fonction
g′ vérifiant certaines conditions. Nous avons donc une liberté supplémentaire dans le choix de
g pour lequel nous nous inspirons des travaux qui ont déjà été réalisés [113], [118] : g vérifie
∂φg(φ) = 0 et ∂φφg(φ) = 0 au niveau des minima de f̃(φ). De plus,

δF [φ,m− h[φ]]

δ(m− h[φ])

∣∣∣∣
m
= λ(m− h[φ]− θeq) = λ(θ − θeq). (D.5)
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Ainsi, nous obtenons

δF [φ,m− h[φ]]

δφ

∣∣∣∣
m
= −α	∇2φ+ f ′(φ)− g′(φ)λ(θ − θeq). (D.6)

Le champ de phase φ(	x, t) évolue dans un potentiel f(φ). Le premier terme du côté droit de
l’équation a un effet analogue à celui de la tension de surface. C’est la première driving-force de
φ. Son rôle est de lisser l’interface : minimiser l’énergie revient à minimiser les gradients de φ.
La seconde driving-force est la variation de la concentration depuis l’état d’équilibre. Ce terme
amène la concentration vers la concentration d’équilibre sachant que chaque déviation augmente
l’énergie libre. C’est le plus simple modèle incluant ces deux driving-forces. À partir de la théorie
de la réponse linéaire, le flux est à gauche, et la force est à droite (dérivée de l’énergie libre) :

∂tφ = − 1

βτφ

δF [φ,m− h[φ]]

δφ

∣∣∣∣
m
, (D.7)

avec une constante homogène à une énergie surfacique β et le temps caractéristique d’évolution
du champ de phase τφ.

La dérivation nous donne ainsi la première équation dynamique

βτφ∂tφ = α	∇2φ− f ′(φ) + λg′(φ)(θ − θeq). (D.8)

D’autre part, la dérivée temporelle de l’Eq. D.2 nous donne :

∂tm = ∂tφ g′(φ) + ∂tθ. (D.9)

La loi de conservation de la masse s’écrit :

∂tm+ 	∇ ·	j = 0, (D.10)

avec 	j, le flux de matière qui traverse le système. La loi phénoménologique de Fick pour la
diffusion de particules est un autre exemple de relation flux-force. Le flux de particules est indiqué
par le membre de gauche, et la driving force est le gradient de concentration de particules :

	j = −M	∇δF

δm
= −Mλ	∇(m− h(φ)− θeq), (D.11)

où M est un taux caractéristique de la diffusion des particules, supposé indépendant de sa position
spatiale. Le produit Mλ est donc homogène à un coefficient de diffusion. Nous en déduisons alors
la seconde équation dynamique de notre modèle de champ de phase :

∂tθ = Mλ	∇2(m− h(φ)− θeq)− ∂tφ g′(φ). (D.12)

Nous réécrivons les Eqs. (D.8) et (D.12), en utilisant les variables adimensionnées suivantes :

lφ = (Mλτφ)
1/2 (D.13)

	̃x = l−1
φ 	x (D.14)

t̃ =
t

τφ
(D.15)

W̃ =

(
α

β

)1/2

l−1
φ (D.16)

∇̃ = lφ∇ (D.17)

f̃ =
f

β
(D.18)

λ̃ =
λ

β
. (D.19)
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Nous obtenons finalement

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + λ̃g′(φ)(θ − θeq) (D.20)

∂t̃θ = ∇̃2(θ − θeq)− ∂t̃φ g′(φ), (D.21)

Le terme g′(φ) de l’Eq. (D.21) peut être approximé à la fonction constante 1/2 [113]. Cette valeur
constante est choisie en tenant compte de la variation de 2 unités de φ = −1 en φ = 1. Ce terme
dépend du potentiel choisi en Sec. 5.2.3. En effet, cette approximation est pertinente dans le
cas d’un W̃ très petit devant les autres longueurs caractéristique du problème [113]. Ce système
d’équations (D.20) et (D.21) est communément appelé modèle C.

Pour vérifier que la dynamique entraîne bien le système vers un minimum d’énergie libre,
nous calculons la dérivée temporelle de F

∂tF =
δF

dt
=

∫
d	x
[
δφ

dt
δF

δφ
+

δm

dt
δF

δm

]
(D.22)

=

∫
d	x
[
∂tφ

δF

δφ
+ ∂tm

δF

δm

]
. (D.23)

Nous pouvons écrire le deuxième terme de la façon suivante

∫
d	x ∂tm

δF

δm

(D.10)
= −

∫
d	x(	∇ ·	j)δF

δm

IPP
=

∫
d	x 	j · 	∇

(
δF

δm

)
= −

∫
d	x M

(
	∇δF

δm

)2

. (D.24)

En combinant les Eqs. (D.7), (D.23) et (D.24), la dynamique entraîne bien le système vers un
état d’énergie libre plus faible :

∂tF = −
∫

d	x
[

1

βτφ

(
δF

δφ

)2

+M

(
	∇δF

δm

)2]
≤ 0. (D.25)

D.1.2 Modèle avec interaction entre cristal et substrat

Nous tenons compte de l’interaction entre le cristal et le substrat. La situation est schématisée
sur la Figure 5.22. La distance entre le cristal et le substrat n’est plus une constante de l’espace
(le substrat présente des défauts) et du temps (le cristal peut se déplacer par rapport au substrat),
on la note hs(	x, t). Sa position est notée zc. Une répulsion due à la pression de disjonction dans le
film liquide entre le cristal et le substrat les sépare l’un de l’autre. Un utilisateur externe applique
une force de poussée sur le cristal Fcz pour le maintenir à une distance finie du substrat. L’énergie
libre est modifiée en :

F [φ, θ, zc] =

∫
d	x

{
α

2
(∇φ)2 + f(φ) + fs(θ, ζ)

}
− Fczzc, (D.26)

où fs(θ, ζ) est une énergie surfacique qui dépend de la concentration en particules et de la distance
au substrat. C’est un terme qui vise à homogénéiser la concentration dans le liquide autour de sa
concentration à l’équilibre. Il tient également compte de l’interaction électrostatique à l’origine de
la pression de disjonction dans le film liquide. La masse totale (adimensionnée) est donnée par le
nombre de particules dans les phases liquide (θ) et solide (g)

m(	x, t) = θ(	x, t) + g(φ). (D.27)

À la différence de l’Eq. (D.2) et avec la discussion qui suit l’Eq. (D.4), nous choisissons ici d’utiliser
directement la fonction g au lieu de la fonction h. La distance entre le cristal et le substrat est
notée

ζ(	x, t) = hs(	x, t)− zc(t)− d[φ]. (D.28)
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avec d[φ] = a⊥g(φ). L’énergie libre se réécrit F [φ, θ, zc] → F [φ,m, zc] :

F [φ,m, zc] =

∫
d	x

{
α

2
(∇φ)2 + f(φ) + fs(m− g, hs − zc − a⊥g)

}
− Fczzc. (D.29)

Les trois dérivées partielles de la fonctionnelle d’énergie libre F sont :

δF

δφ
= −αΔφ+ f ′(φ)− g′(φ)

{
∂θfs(θ, ζ) + a⊥∂ζfs(θ, ζ)

}
(D.30)

δF

δm
= ∂θfs(θ, ζ) (D.31)

dF

dzc
= −

∫
d	x∂ζfs(θ, ζ)− Fcz. (D.32)

Les trois dérivées fonctionnelles permettent d’écrire les 3 équations du mouvement (D.33), (D.34)
et (D.35) avec des relations flux-force :

∂tφ = − 1

βτφ

δF

δφ
=

1

βτφ

[
αΔφ− f ′(φ) + g′(φ)

{
∂θfs(θ, ζ) + a⊥∂ζfs(θ, ζ)

}]
(D.33)

∂tm
(D.11)
= 	∇ ·M	∇δF

δm
= 	∇ ·M	∇∂θfs(θ, ζ) (D.34)

dtzc = − 1

βν

δF

dzc
=

1

βν

[ ∫
d	x∂ζfs(θ, ζ) + Fcz

]
. (D.35)

L’Eq. (D.35) donne la condition d’équilibre entre la force de pression appliquée par un opérateur
externe, la force de répulsion du cristal sur le substrat et la dissipation visqueuse caractérisée par
le temps de relaxation hydrodynamique ν. Ce temps est relié à la viscosité dynamique η par la
relation tirée de l’Eq. (39) de la Ref. [120], pour un contact axisymétrique de rayon Rc entre le
substrat et le cristal

βν =
3πηR4

c

2
< ζ−3 >x,y , (D.36)

où la quantité < · >x,y exprime une moyenne sur tout le plan (x, y). Dans notre cas, nous avons
Rc = L/2. La force de répulsion inclut notamment la pression de disjonction du film entre le
cristal et le substrat. La force de cristallisation est comprise dans ce terme. À l’instar de (D.25),
nous vérifions que la dynamique entraîne bien le système vers un minimum d’énergie libre F .
Pour cela, nous calculons sa dérivée temporelle :

δF

dt
=

∫
d	x

[
∂tφ

δF

δφ
+ ∂tm

δF

δm

]
+

dzc
dt

δF

dzc
(D.37)

À l’instar de l’Eq. (D.25), en combinant les Eqs. (D.35) et (D.37), la dérivée temporelle de l’énergie
libre peut se réécrire sous une forme explicitement négative :

δF

dt
= −

∫
d	x

[
1

βτφ

(
δF

δφ

)2

+M

(
	∇δF

δm

)2
]
− 1

βν

(
δF

dzc

)2

≤ 0. (D.38)

Cette condition est nécessaire pour respecter le premier principe thermodynamique.
Première hypothèse : Nous pouvons considérer, sans grande perte de généralité, que θ(ζ) oscille

dans un voisinage de son état d’équilibre θeq(ζ), qui est un minimum de fs(θ, ζ). Sa première
dérivée par rapport à θ s’annule. Un développement limité autour de sa valeur d’équilibre donne

fs(θ, ζ) = fs(θeq(ζ), ζ) +
1

2
∂θθfs(θeq(ζ), ζ)(θ − θeq(ζ))

2 +O
(
(θ − θeq(ζ))

2
)
. (D.39)
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En notant,

Λ(ζ) = ∂θθfs(θeq(ζ), ζ), (D.40)

et en combinant les Eqs. (D.39) et (D.40), nous pouvons approximer le terme de droite de l’Eq.
(D.34) par

∂θfs(θ, ζ) ≈ Λ(ζ)(θ − θeq(ζ)). (D.41)

Nous retiendrons que Λ est homogène à une énergie surfacique. D’autre part, l’autre dérivée
partielle de fs(θ, ζ) est nécessaire dans les Eqs. (D.33) et (D.35). Nous l’approximons à partir de
la forme (D.39) :

∂ζfs(θ, ζ) ≈ ∂ζfs(θeq(ζ), ζ) +
1

2

dΛ(ζ)

dζ
(θ − θeq(ζ))

2 − Λ(ζ)
dθeq(ζ)

dζ
(θ − θeq(ζ)) (D.42)

En négligeant tous les termes d’ordre supérieurs ou égaux à 2 du développement en (θ − θeq(ζ))
2,

nous pouvons réécrire le système (D.33), (D.34) et (D.35) :

βτφ∂tφ = αΔφ− f ′(φ) + g′(φ)
[(

1− a⊥
dθeq
dζ

)
Λ(ζ)(θ − θeq(ζ)) + a⊥U ′(ζ)

]
(D.43)

∂tm = 	∇ ·M	∇[Λ(ζ)(θ − θeq(ζ))
]

(D.44)

βνucz =

∫
d	x

[
U ′(ζ)− Λ(ζ)

dθeq
dζ

(
θ − θeq(ζ)

)]
+ Fcz. (D.45)

Par analogie entre les Eqs. (D.12) et (D.44), le produit MΛ est homogène à un coefficient de
diffusion. Le dernier terme du membre de droite de la première équation est en fait la force de
répulsion entre le cristal et le substrat dû à la pression de disjonction dans le film liquide

U ′(ζ) =
d

dζ
fs(θeq(ζ), ζ). (D.46)

C’est le même terme que l’on retrouve dans l’Eq. (D.45). La seconde hypothèse consiste à se
placer dans la limite diluée, c’est-à-dire supposer que la concentration en particules est faible à
l’état d’équilibre. Pour exprimer cela, nous définissons une nouvelle variable, la concentration
moyennée sur l’axe z :

c̄ =
1

ζ

∫ hs

zc+a⊥g[φ]
dzc(x, y, z). (D.47)

Le taux de couverture θ étant le nombre de particules intégrées sur l’axe z, il est relié à cette
concentration par la relation

θ =

∫ hs

zc+a⊥g[φ]
dzΩc(x, y, z) = ζΩc̄(x, y). (D.48)

La dérivée dθeq/dζ représente la variation du nombre de particules en fonction de la hauteur entre
le cristal et le substrat dans un état d’équilibre. Elle peut s’exprimer simplement en fonction de
c̄eq

dθeq
dζ

=
d

dζ
ζΩc̄eq ∼ Ωc̄eq. (D.49)

La condition de concentration en particules faible à l’état d’équilibre s’écrit Ωa⊥c̄eq � 1. Ainsi,
(1− Ωa⊥c̄eq) ≈ 1 et Λ(ζ)Ωc̄eq

(
θ − θeq(ζ)

)� U ′(ζ). De plus, en sachant que (θ − θeq) � 1, cela
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implique que Ωa⊥c̄ � 1. En tenant compte de cette seconde hypothèse, les Eqs. (D.43), (D.44) et
(D.45) deviennent

βτφ∂tφ = αΔφ− f ′(φ) + g′(φ)
[
Λ(ζ)(θ − θeq(ζ)) + a⊥U ′(ζ)

]
(D.50)

∂tm = 	∇ ·M	∇[Λ(ζ)(θ − θeq(ζ))
]

(D.51)

βνucz =

∫
d	x
[
U ′(ζ)

]
+ Fcz. (D.52)

Le système d’Eqs. (D.50), (D.51) et (D.52) est un jeu fermé de trois équations donnant l’évolution
des trois variables m,φ, ucz. Le taux de couverture θ est l’intégrale de la concentration c sur une
colonne de surface Ω suivant la direction z. C’est le nombre de particules par colonne.

Pour la description de Λ, considérons le cas où la concentration d’équilibre est uniforme dans
la solution. Le flux de matière 	j est donc nul pour une concentration c(x, y, z) constante :

	j = −M	∇ (Λ(θ − θeq(ζ))) = 0. (D.53)

Ainsi, θ = Ωζ c = Ωζc et

	j = 0 ⇔ 	∇ (Λ(θ − θeq(ζ))) = 0

⇔ 	∇ (ΛΩζ(c− ceq)) = 0 (D.54)

⇔ 	∇ (Λζ) = 0 car Ω(c− ceq) est constant. (D.55)

Pour que l’Eq. (D.55) soit vérifiée, Λ doit vérifier Λ ∝ ζ−1. Ce modèle simple nous permet donc
d’écrire

Λ = λ
a⊥
ζ
, (D.56)

où λ est une constante indépendante de ζ. Nous retiendrons que λ est homogène à Λ, c’est-à-dire
à une énergie surfacique. De manière analogue à c, qui est une concentration moyennée sur l’axe
des z, le vecteur 	j(x, y, t) est un vecteur moyenné sur l’axe des z. Nous définissons alors 	jmicro le
flux de matière dépendant des 3 coordonnées de l’espace. Il est défini à partir du vecteur 	j(x, y, t)

	j(x, y, t) =

∫ hs

zc+d[φ]
dz 	jmicro(x, y, z, t), (D.57)

et est associé à un coefficient de diffusion Mmicro

	jmicro(x, y, z, t) = −Mmicro
	∇(c(x, y, z, t)− ceq) = −Mmicro

	∇(c(x, y, t)− ceq). (D.58)

L’objectif est maintenant de relier ce coefficient de diffusion Mmicro à M . Le lien formel entre le
flux microscopique, vecteur 3D, au flux macroscopique, vecteur 2D dans le plan (x, y), peut être
obtenu dans une limite dite de lubrification, où les fonctions h et hs varient très lentement dans
l’espace [98]. Ici, nous prenons une démarche plus intuitive, en considérant le cas simplifié où
c(x, y, z) ne dépend pas de z et où h et hs sont constants. Dans ce cas, c̄(x, y) = c(x, y, z), et en
combinant (D.57) et (D.58), nous obtenons

	j(x, y, t) = −ζ(x, y, t)Mmicro
	∇(c(x, y, t)− ceq). (D.59)

Le flux macroscopique est proportionnel à l’épaisseur ζ du film, ce qui est attendu pour un
flux essentiellement parallèle au film.

De plus, le vecteur 	j vérifie l’Eq. (D.53). En utilisant (D.56), nous obtenons une seconde
relation pour 	j :

	j(x, y, t) = −Mλa⊥Ω	∇(c− ceq) (D.60)
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Par identification entre les Eqs. (D.59) et (D.60), nous pouvons écrire le lien entre les coefficients
de diffusion Mmicro (microscopique) et M (diffusion de particules moyennée sur l’axe z)

M =
ζMmicro

Ωa⊥λ
∝ ζ. (D.61)

Le rapport Mmicro/Ω est homogène au produit Mλ, et est donc homogène à un coefficient de
diffusion. Nous pouvons donc relier une longueur caractéristique de la diffusion Ldiff à un temps
caractéristique de la diffusion τdiff par la relation

L2
diff =

Mmicro

Ω
τdiff . (D.62)

La combinaison des Eqs. (D.27), (D.48) et (D.51) donne :

∂tm = Ω∂t(ζ c) + g′(φ)∂tφ = 	∇ ·
(
M	∇(ΛζΩ(c− ceq))

)
. (D.63)

En remplaçant ζ par son expression de l’Eq. (D.28), nous pouvons écrire le premier terme de la
dérivée temporelle :

Ω∂t(ζ c) = Ω∂t
[
hs(x, y)− zc(t)− a⊥g(φ)

]
c+Ωζ ∂tc (D.64)

Ω∂t(ζ c) = −Ωuczc− a⊥Ω∂tφ g′(φ) c+Ωζ ∂tc. (D.65)

Nous définissons une nouvelle variable C qui représente le volume moyen occupé par les particules
dans la phase liquide :

C = a⊥Ωc̄. (D.66)

L’Eq. (D.63) se réécrit alors, en la multipliant par a⊥, puis avec (D.56), (D.61), (D.65) et (D.66) :

−uczC + ζ ∂tC + a⊥∂tφ g′(φ)
[
1− C

]
=

Mmicro

Ω
	∇ ·
(
ζ 	∇(C − Ceq)

)
(D.67)

En divisant par ζ de part et d’autre, nous obtenons :

∂tC = ucz
C

ζ
− a⊥

ζ
g′(φ)∂tφ

[
1− C

]
+

Mmicro

Ωζ
	∇ ·
(
ζ 	∇(C − Ceq)

)
(D.68)

En développant le gradient du dernier terme du membre de droite :

∂tC = ucz
C

ζ
− a⊥

ζ
g′(φ)∂tφ

[
1− C

]
+

Mmicro

Ω

[
Δ(C − Ceq) +

	∇ζ

ζ
· 	∇(C − Ceq)

]
(D.69)

∂tC = ucz
C

ζ
− a⊥

ζ
g′(φ)∂tφ

[
1− C

]
+

Mmicro

Ω

[
Δ(C − Ceq) + 	∇(ln ζ) · 	∇(C − Ceq)

]
. (D.70)

De manière analogue au raisonnement de l’annexe D.1.1, nous pouvons considérer que g′(φ) ≈ 1
[113] dans l’Eq. (D.70). Nous supposons que Ceq est une constante indépendante de ζ. Nous
déduisons finalement le système d’équation régissant le modèle de champ de phase :

βτφ∂tφ = α∇2φ− f ′(φ) + g′(φ)
[
λ (C − Ceq) + a⊥U ′(ζ)

]
(D.71)

∂tC = ∂tzc
C

ζ
− a⊥

ζ
∂tφ
[
1− C

]
+

Mmicro

Ω

[
ΔC + 	∇(ln ζ) · 	∇C

]
(D.72)

βν∂tzc =

∫
d	xU ′(ζ) + Fcz. (D.73)

Soit

lφ = (Mmicroτφ/Ω)
1/2. (D.74)
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Nous réécrivons ces équations avec les variables adimensionnées suivantes t̃ = t/τφ, 	̃x = l−1
φ 	x, f̃ =

f/β, λ̃ = λ/β, ∇̃ = lφ∇, W̃ = (α/β)1/2l−1
φ , Ũ = U/β, z̃c = zc/a⊥, ζ̃ = ζ/a⊥, ν̃ = νa2⊥(τφlφ)

−1

et F̃cz = Fcza⊥(l2φβ)
−1.

∂t̃φ = W̃ 2∇̃2φ− f̃ ′(φ) + g′(φ)
[
λ̃ (C − Ceq) + ∂ζ̃Ũ

]
(D.75)

∂t̃C = ∂t̃z̃c
C

ζ̃
− ∂t̃φ

ζ̃

[
1− C

]
+
[
Δ̃C + 	̃∇(ln ζ̃) · 	̃∇C

]
(D.76)

∂t̃z̃c = ν̃−1

[ ∫
d	̃x ∂ζ̃Ũ + F̃cz

]
. (D.77)

De plus, nous pouvons réécrire l’équation des grandeurs caractéristiques de la diffusion Eq.
(D.62) avec les variables adimensionnées L̃diff = l−1

φ Ldiff et τ̃diff = τdiff/τφ

L̃2
diff = τ̃diff . (D.78)
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D.2 Résolution numérique d’équations différentielles

D.2.1 Choix d’une méthode d’Euler

Nous résolvons les équations en utilisant la méthode d’Euler. Il existe deux schémas d’Euler
distincts. La méthode d’Euler explicite est la plus couramment utilisée. Elle consiste à effectuer
l’approximation

y′(xi) ≈ y(xi+1)− y(xi)

xi+1 − xi
. (D.79)

La méthode d’Euler implicite fait appel à la forme

y′(xi) ≈ y(xi)− y(xi−1)

xi − xi−1
. (D.80)

Cette seconde expression assure une plus grande stabilité numérique en vue d’une convergence
vers une solution. Elle est notamment utile en cas de non linéarité de l’équation différentielle.
Nous utilisons donc la méthode d’Euler implicite pour intégrer les équations du modèle de champ
de phase.

D.2.2 Application à notre étude

Focalisons-nous sur la grandeur φ(x, y, t), le paramètre d’ordre du modèle, de transformée de
Fourier φq(t). Nous appliquons le schéma d’Euler implicite (D.80) à φq(t+ dt)

∂tφq(t+ dt) =
φq(t+ dt)− φq(t)

dt
. (D.81)

Repartons de la transformée de Fourier (x → q) de l’Eq. (5.5). Nous notons la partie non
linéaire de l’équation N(x, y, t), la partie linéaire Lφ = −W 2q2 et l’opération transformée de
Fourier TF{·}. Les variables indicées .q sont exprimées dans l’espace de Fourier. Nous en déduisons

∂tφq(t+ dt) = W 2∇2φq(t+ dt) + TF{N(x, y, t)} (D.82)
= Lφφq(t+ dt) +Nq(t+ dt). (D.83)

En combinant les Eqs. (D.81) et (D.82), nous obtenons

φq(t+ dt) =
1

1− Lφdt
φq(t) +

dt
1− Lφdt

Nq(t+ dt). (D.84)

De manière analogue, en notant la partie non linéaire de l’Eq. (5.6) M(x, y, t) et la partie linéaire
Lθ = −q2 nous déduisons, pour le champ θ

θq(t+ dt) =
1

1− Lθdt
θ(t) +

dt
1− Lθdt

Mq(t+ dt). (D.85)

En pratique, nous faisons l’hypothèse que Nq(t+ dt) ≈ Nq(t) (de même pour Mq(t+ dt) ≈
Mq(t)) peuvent être négligés dans les Eqs. (D.84) et (D.85). La méthode utilisée est alors
intermédiaire entre les méthodes d’Euler implicite et explicite. La stabilité des simulations
numériques est toujours vérifiée.

De plus, nous notons les termes

Kφ,q =
1

1− Lφdt
(D.86)

Kθ,q =
1

1− Lθdt
. (D.87)

Les équations à résoudre sont finalement

φq(t+ dt) = Kφ,qφq(t) +Kφ,qdtNq(t) (D.88)
θq(t+ dt) = Kθ,qθ(t) +Kθ,qdtMq(t). (D.89)
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D.3 Résolution numérique

D.3.1 Modèle sans interaction avec le substrat

Nous partons d’un système avec les conditions initiales φ0(x, y), θ0(x, y) (nous utilisons l’indice
.0 pour les variables prises au temps t = 0). La structure du code de résolution est donnée par la
série de consignes suivante :

• φq(t) ←− φ(x, y, t)

• θq(t) ←− θ(x, y, t)

• Kφ,q ←− 1

1− Lφdt

• Kθ,q ←− 1

1− Lθdt
Début time loop

• N(x, y, t) ←− −f ′(φ) + λ(1−B(x, y)) (θ − θeq) g
′(φ)

• M(x, y, t) ←− −B(x, y)τ̃(θ − θBC)

• Nq(t) ←− TF{N(x, y, t)}
• Mq(t) ←− TF{M(x, y, t)}
• φq(t+ dt) ←− Kφ,q

(
φ(t) + dtNq(t)

)
• θq(t+ dt) ←− Kθ,q

(
θ(t)− (φq(t+ dt)− φq(t))

2
+ dtMq(t)

)
• φ(x, y, t+ dt) ←− TF−1{φq(t+ dt)}
• θ(x, y, t+ dt) ←− TF−1{θq(t+ dt)}

D.3.2 Prise en compte de l’interaction avec le substrat

De nouvelles variables sont désormais prises en compte, et les équations à résoudre (5.33-5.35)
sont plus complexes. Nous démarrons avec les conditions initiales zc,0 = 0, φ(x, y, t) = φ0(x, y),
C (x, y, t) = C0(x, y), hs(x, y) = hs,init(x, y) et ζ0(x, y) = hs(x, y)− φ0(x, y)− zc,0. La résolution
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est réalisée en suivant le schéma ci-après :

• φq(t) ←− TF{φ(x, y, t)}
• Cq(t) ←− TF{C (x, y, t)}
• hsq(t) ←− TF{hs(x, y, t)}
• ζq(t) ←− TF{ζ(x, y, t)}
• Kφ,q ←− 1

1− Lφdt

• KC ,q ←− 1

1− LC dt
Début time loop

• N(x, y, t) ←− −f ′(φ) +
(
λ(C − Ceq) + U ′(ζ)

)
(1−B(x, y))g′(φ)− γB(x, y)

• Nq(t) ←− TF{N(x, y, t)}

• ucz(t) ←− 1

ν

(
Fcz +

∫
d	xU(t)

)
• φq(t+ dt) ←− Kφ,q (φq(t) + dtNq(t))

• φ(x, y, t+ dt) ←− TF−1{φq(t+ dt)}
• ∂xζ(x, y, t) ←− TF−1{iqxζq(t)}
• ∂yζ(x, y, t) ←− TF−1{iqyζq(t)}
• ∂xC (x, y, t) ←− TF−1{iqxCq(t)}
• ∂yC (x, y, t) ←− TF−1{iqyCq(t)}

• M(x, y, t) ← ucz(t)C

ζ(t)
− φ(t+ dt)− φ(t)

ζ(t)
(1− C ) +

∂xζ(t)∂xC + ∂yζ(t)∂yC

ζ(t)
−B(x, y)τratio(C − CBC)

• Mq(t) ←− TF{M(x, y, t)}
• Cq(t+ dt) ←− KC ,q (Cq(t) + dtMq(t))

• C (x, y, t+ dt) ←− TF−1{Cq(t+ dt)}
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